
López

Shelve in
Applications/Mathematical &
Statistical Software

MATLAB Optimization Techniques M
ATLAB Optim

ization Techniques

MATLAB is a high-level language and environment for numerical computation, visualization, and
programming. Using MATLAB, you can analyze data, develop algorithms, and create models
and applications. The language, tools, and built-in math functions enable you to explore multiple
approaches and reach a solution faster than with spreadsheets or traditional programming
languages, such as C/C++ or Java.

MATLAB Optimization Techniques introduces you to the MATLAB language with practical hands-
on instructions and results, allowing you to quickly achieve your goals. It begins by introducing the
MATLAB environment and the structure of MATLAB programming before moving on to the mathematics
of optimization. The central part of the book is dedicated to MATLAB’s Optimization Toolbox, which
implements state-of-the-art algorithms for solving multiobjective problems, non-linear minimization with
boundary conditions and restrictions, minimax optimization, semi-infinitely constrained minimization and
linear and quadratic programming. A wide range of exercises and examples are included, illustrating the
most widely used optimization methods.

• The MATLAB environment and MATLAB programming
• How to solve equations and systems of equations with MATLAB
• The main features of MATLAB’s Optimization Toolbox, which implements state-of-the art
 algorithms for solving optimization problems
• How to use MATLAB for multivariate calculus
• A wide range of optimization techniques, augmented with numerous examples and exercises

9 781484 202937

54999
ISBN 978-1-4842-0293-7

For your convenience Apress has placed some of the front
matter material after the index. Please use the Bookmarks

and Contents at a Glance links to access them.

iii

Contents at a Glance

About the Author�� ix

Chapter 1: Introducing MATLAB and the MATLAB Working Environment■■ ����������������������������1

Chapter 2: MATLAB Programming■■ ��23

Chapter 3: Basic MATLAB Functions for Linear and Non-Linear Optimization■■ �����������������53

Chapter 4: Optimization by Numerical Methods: Solving Equations■■ ��������������������������������67

Chapter 5: Optimization Using Symbolic Computation■■ ���81

Chapter 6: Optimization Techniques Via The Optimization Toolbox■■ ����������������������������������85

�Chapter 7: Differentiation in one and Several Variables. ■■
Applications to Optimization��109

Chapter 8: Optimization of Functions of Complex Variables■■ ��165

�Chapter 9: Algebraic Expressions, Polynomials, Equations and Systems. ■■
Tools for Optimization��217

1

Chapter 1

Introducing MATLAB and the MATLAB
Working Environment

1.1 Introduction
MATLAB is a platform for scientific calculation and high-level programming which uses an interactive environment
that allows you to conduct complex calculation tasks more efficiently than with traditional languages, such as C,
C++ and FORTRAN. It is the one of the most popular platforms currently used in the sciences and engineering.

MATLAB is an interactive high-level technical computing environment for algorithm development, data
visualization, data analysis and numerical analysis. MATLAB is suitable for solving problems involving technical
calculations using optimized algorithms that are incorporated into easy to use commands.

It is possible to use MATLAB for a wide range of applications, including calculus, algebra, statistics, econometrics,
quality control, time series, signal and image processing, communications, control system design, testing and
measuring systems, financial modeling, computational biology, etc. The complementary toolsets, called toolboxes
(collections of MATLAB functions for special purposes, which are available separately), extend the MATLAB
environment, allowing you to solve special problems in different areas of application.

In addition, MATLAB contains a number of functions which allow you to document and share your work.
It is possible to integrate MATLAB code with other languages and applications, and to distribute algorithms and
applications that are developed using MATLAB.

The following are the most important features of MATLAB:

It is a high-level language for technical calculation•	

It offers a development environment for managing code, files and data•	

It features interactive tools for exploration, design and iterative solving•	

It supports mathematical functions for linear algebra, statistics, Fourier analysis, filtering, •	
optimization, and numerical integration

It can produce high quality two-dimensional and three-dimensional graphics to aid data •	
visualization

It includes tools to create custom graphical user interfaces•	

It can be integrated with external languages, such as C/C++, FORTRAN, Java, COM, and •	
Microsoft Excel

The MATLAB development environment allows you to develop algorithms, analyze data, display data files and
manage projects in interactive mode (see Figure 1-1).

Chapter 1 ■ Introducing MATLAB and the MATLAB Working Environment

2

1.1.1 Developing Algorithms and Applications
MATLAB provides a high-level programming language and development tools which enable you to quickly develop
and analyze algorithms and applications.

The MATLAB language includes vector and matrix operations that are fundamental to solving scientific and
engineering problems. This streamlines both development and execution.

With the MATLAB language, it is possible to program and develop algorithms faster than with traditional
languages because it is no longer necessary to perform low-level administrative tasks, such as declaring variables,
specifying data types and allocating memory. In many cases, MATLAB eliminates the need for 'for' loops. As a result, a
line of MATLAB code usually replaces several lines of C or C++ code.

At the same time, MATLAB offers all the features of traditional programming languages, including arithmetic
operators, control flow, data structures, data types, object-oriented programming (OOP) and debugging.

Figure 1-2 shows a communication modulation algorithm that generates 1024 random bits, performs the
modulation, adds complex Gaussian noise and graphically represents the result, all in just nine lines of MATLAB code.

Figure 1-1. 

Chapter 1 ■ Introducing MATLAB and the MATLAB Working Environment

3

MATLAB enables you to execute commands or groups of commands one at a time, without compiling or linking,
and to repeat the execution to achieve the optimal solution.

To quickly execute complex vector and matrix calculations, MATLAB uses libraries optimized for the processor.
For general scalar calculations, MATLAB generates instructions in machine code using JIT (Just-In-Time) technology.
Thanks to this technology, which is available for most platforms, the execution speeds are much faster than for
traditional programming languages.

MATLAB includes development tools, which help to efficiently implement algorithms. Some of these tools are
listed below:

•	 MATLAB Editor – used for editing functions and standard debugging, for example setting
breakpoints and running step-by-step simulations

•	 M-Lint Code Checker - analyzes the code and recommends changes to improve performance
and maintenance (see Figure 1-3)

•	 MATLAB Profiler - records the time taken to execute each line of code

•	 Directory Reports - scans all files in a directory and creates reports about the efficiency of the
code, differences between files, dependencies of files and code coverage

Figure 1-2. 

Chapter 1 ■ Introducing MATLAB and the MATLAB Working Environment

4

You can also use the interactive tool GUIDE (Graphical User Interface Development Environment) to design and
edit user interfaces. This tool allows you to include pick lists, drop-down menus, push buttons, radio buttons and
sliders, as well as MATLAB diagrams and ActiveX controls. You can also create graphical user interfaces by means of
programming using MATLAB functions.

Figure 1-4 shows a completed wavelet analysis tool (bottom) which has been created using the user interface
GUIDE (top).

Figure 1-3. 

Chapter 1 ■ Introducing MATLAB and the MATLAB Working Environment

5

1.1.2 Data Access and Analysis
MATLAB supports the entire process of data analysis, from the acquisition of data from external devices and databases,
pre-processing, visualization and numerical analysis, up to the production of results in presentation quality.

MATLAB provides interactive tools and command line operations for data analysis, which include: sections of
data, scaling and averaging, interpolation, thresholding and smoothing, correlation, Fourier analysis and filtering,
searching for one-dimensional peaks and zeros, basic statistics and curve fitting, matrix analysis, etc.

The diagram in Figure 1-5 shows a curve that has been fitted to atmospheric pressure differences averaged
between Easter Island and Darwin in Australia.

Figure 1-4. 

Chapter 1 ■ Introducing MATLAB and the MATLAB Working Environment

6

The MATLAB platform allows efficient access to data files, other applications, databases and external devices.
You can read data stored in most known formats, such as Microsoft Excel, ASCII text files or binary image, sound and
video files, and scientific archives such as HDF and HDF5 files. The binary files for low level I/O functions allow you to
work with data files in any format. Additional features allow you to view Web pages and XML data.

It is possible to call other applications and languages, such as C, C++, COM, DLLs, Java, FORTRAN,
and Microsoft Excel objects, and access FTP sites and Web services. Using the Database Toolbox, you can even
access ODBC/JDBC databases.

1.1.3 Data Visualization
All graphics functions necessary to visualize scientific and engineering data are available in MATLAB. This includes
tools for two- and three-dimensional diagrams, three-dimensional volume visualization, tools to create diagrams
interactively, and the ability to export using the most popular graphic formats. It is possible to customize diagrams,
adding multiple axes, changing the colors of lines and markers, adding annotations, LaTeX equations and legends,
and plotting paths.

Various two-dimensional graphical representations of vector data can be created, including:

Line, area, bar and sector diagrams•	

Direction and velocity diagrams•	

Histograms•	

Figure 1-5. 

Chapter 1 ■ Introducing MATLAB and the MATLAB Working Environment

7

Polygons and surfaces•	

Dispersion bubble diagrams•	

Animations•	

Figure 1-6 shows linear plots of the results of several emission tests of a motor, with a curve fitted to the data.

Figure 1-6. 

MATLAB also provides functions for displaying two-dimensional arrays, three-dimensional scalar data and
three-dimensional vector data. It is possible to use these functions to visualize and understand large amounts
of complex multi-dimensional data. It is also possible to define the characteristics of the diagrams, such as the
orientation of the camera, perspective, lighting, light source and transparency. Three-dimensional diagramming
features include:

Surface, contour and mesh plots•	

Space curves•	

Cone, phase, flow and isosurface diagrams•	

Figure 1-7 shows a three-dimensional diagram of an isosurface that reveals the geodesic structure of a fullerene
carbon-60 molecule.

Chapter 1 ■ Introducing MATLAB and the MATLAB Working Environment

8

MATLAB includes interactive tools for graphic editing and design. From a MATLAB diagram, you can perform
any of the following tasks:

Drag and drop new sets of data into the figure•	

Change the properties of any object in the figure•	

Change the zoom, rotation, view (i.e. panoramic), camera angle and lighting•	

Add data labels and annotations•	

Draw shapes•	

Generate an M-file for reuse with different data•	

Figure 1-8 shows a collection of graphics which have been created interactively by dragging data sets onto the
diagram window, making new subdiagrams, changing properties such as colors and fonts, and adding annotations.

Figure 1-7. 

Chapter 1 ■ Introducing MATLAB and the MATLAB Working Environment

9

MATLAB is compatible with all the well-known data file and graphics formats, such as GIF, JPEG, BMP, EPS, TIFF, PNG,
HDF, AVI, and PCX. As a result, it is possible to export MATLAB diagrams to other applications, such as Microsoft Word
and Microsoft PowerPoint, or desktop publishing software. Before exporting, you can create and apply style templates that
contain all the design details, fonts, line thickness, etc., necessary to comply with the publication specifications.

1.1.4 Numerical Calculation
MATLAB contains mathematical, statistical, and engineering functions that support most of the operations carried
out in those fields. These functions, developed by math experts, are the foundation of the MATLAB language. To cite
some examples, MATLAB implements mathematical functions and data analysis in the following areas:

Manipulation of matrices and linear algebra•	

Polynomials and interpolation•	

Fourier analysis and filters•	

Statistics and data analysis•	

Optimization and numerical integration•	

Figure 1-8. 

Chapter 1 ■ Introducing MATLAB and the MATLAB Working Environment

10

Ordinary differential equations (ODEs)•	

Partial differential equations (PDEs)•	

Sparse matrix operations•	

1.1.5 Publication of Results and Distribution of Applications
In addition, MATLAB contains a number of functions which allow you to document and share your work. You can
integrate your MATLAB code with other languages and applications, and distribute your algorithms and MATLAB
applications as autonomous programs or software modules.

MATLAB allows you to export the results in the form of a diagram or as a complete report. You can export
diagrams to all popular graphics formats and then import them into other packages such as Microsoft Word or
Microsoft PowerPoint. Using the MATLAB Editor, you can automatically publish your MATLAB code in HTML format,
Word, LaTeX, etc. For example, Figure 1-9 shows an M-file (left) published in HTML (right) using the MATLAB Editor.
The results, which are sent to the Command Window or to diagrams, are captured and included in the document and
the comments become titles and text in HTML.

Figure 1-9. 

Chapter 1 ■ Introducing MATLAB and the MATLAB Working Environment

11

It is possible to create more complex reports, such as mock executions and various parameter tests, using
MATLAB Report Generator (available separately).

MATLAB provides functions enabling you to integrate your MATLAB applications with C and C++ code,
FORTRAN code, COM objects, and Java code. You can call DLLs and Java classes and ActiveX controls. Using the
MATLAB engine library, you can also call MATLAB from C, C++, or FORTRAN code.

You can create algorithms in MATLAB and distribute them to other users of MATLAB. Using the MATLAB
Compiler (available separately), algorithms can be distributed, either as standalone applications or as software
modules included in a project, to users who do not have MATLAB. Additional products are able to turn algorithms
into a software module that can be called from COM or Microsoft Excel.

1.2 The MATLAB Working Environment
Figure 1-10 shows the primary workspace of the MATLAB environment. This is the screen in which you enter your
MATLAB programs.

Menu command window help working folder workspace

Button home window size commands command history

Figure 1-10. 

Chapter 1 ■ Introducing MATLAB and the MATLAB Working Environment

12

The following table summarizes the components of the MATLAB environment.

Tool Description

Command History This allows you to see the commands entered during the session in the Command Window,
as well as copy them and run them (lower right part of Figure 1-11)

Command Window This is where you enter MATLAB commands (central part of Figure 1-11)

Workspace This allows you to view the contents of the workspace (variables, etc.) (upper right part
of Figure 1-11)

Help This offers help and demos on MATLAB

Start button This enables you to run tools and provides access to MATLAB documentation (Figure 1-12)

Figure 1-11. 

Chapter 1 ■ Introducing MATLAB and the MATLAB Working Environment

13

Figure 1-12. 

MATLAB commands are written in the Command Window to the right of the user input prompt ">>" and the
response to the command will appear in the lines immediately below. After exiting from the response, the user input
prompt will re-display, allowing you to input more entries (Figure 1-13).

Chapter 1 ■ Introducing MATLAB and the MATLAB Working Environment

14

Figure 1-13. 

When an input is given to MATLAB in the Command Window and the result is not assigned to a variable, the
response returned will begin with the expression “ans=”, as shown near the top of Figure 1-13. If the results are
assigned to a variable, we can then use that variable as an argument for subsequent input. This is the case for the
variable v in Figure 1-13, which is subsequently used as the input for an exponential.

To run a MATLAB command, simply type the command and press Enter. If at the end of the input we put a
semicolon, the program runs the calculation and keeps it in memory (Workspace), but does not display the result
on the screen (see the first entry in Figure 1-13). The input prompt “>>” appears to indicate that you can enter a new
command.

Like the C programming language, MATLAB is case sensitive; for example, Sin(x) is not the same as sin(x).
The names of all built-in functions begin with a lowercase character. There should be no spaces in the names of
commands, variables or functions. In other cases, spaces are ignored, and they can be used to make the input more
readable. Multiple entries can be entered in the same command line by separating them with commas, pressing
Enter at the end of the last entry (see Figure 1-14). If you use a semicolon at the end of one of the entries in the line, its
corresponding output will not be displayed.

Chapter 1 ■ Introducing MATLAB and the MATLAB Working Environment

15

Descriptive comments can be entered in a command input line by starting them with the “%” symbol. When you
run the input, MATLAB ignores the comment and processes the rest of the code (see Figure 1-15).

To simplify the process of entering script to be evaluated by the MATLAB interpreter (via the Command Window
prompt), you can use the arrow keys. For example, if you press the up arrow key once, you will recover the last entry
you submitted. If you press the up key twice, you will recover the penultimate entry you submitted, and so on.

If you type a sequence of characters in the input area and then press the up arrow key, you will recover the last
entry you submitted that begins with the specified string.

Figure 1-14. 

Figure 1-15. 

Chapter 1 ■ Introducing MATLAB and the MATLAB Working Environment

16

Commands entered during a MATLAB session are temporarily stored in the buffer (Workspace) until you end the
session, at which time they can be stored in a file or are permanently lost.

Below is a summary of the keys that can be used in MATLAB’s input area (command line), together with
their functions:

Up arrow (Ctrl-P) Retrieves the previous entry.

Down arrow (Ctrl-N) Retrieves the following entry.

Left arrow (Ctrl-B) Moves the cursor one character to the left.

Right arrow (Ctrl-F) Moves the cursor one character to the right.

CTRL-left arrow Moves the cursor one word to the left.

CTRL-right arrow Moves the cursor one word to the right.

Home (Ctrl-A) Moves the cursor to the beginning of the line.

End (Ctrl-E) Moves the cursor to the end of the current line.

Escape Clears the command line.

Delete (Ctrl-D) Deletes the character indicated by the cursor.

Backspace Deletes the character to the left of the cursor.

CTRL-K Deletes (kills) the current line.

The command clc clears the command window, but does not delete the contents of the work area (the contents
remain in the memory).

1.3 Help in MATLAB
You can find help for MATLAB via the help button in the toolbar or via the Help option in the menu bar. In

addition, support can also be obtained via MATLAB commands. The command help provides general help on all
MATLAB commands (see Figure 1-16). By clicking on any of them, you can get more specific help. For example, if you
click on graph2d, you get support for two-dimensional graphics (see Figure 1-17).

Chapter 1 ■ Introducing MATLAB and the MATLAB Working Environment

17

Figure 1-16. 

Chapter 1 ■ Introducing MATLAB and the MATLAB Working Environment

18

You can ask for help about a specific command command (Figure 1-18) or on any topic topic (Figure 1-19) by
using the command help command or help topic.

Figure 1-17. 

Chapter 1 ■ Introducing MATLAB and the MATLAB Working Environment

19

Figure 1-18. 

Chapter 1 ■ Introducing MATLAB and the MATLAB Working Environment

20

The command lookfor string allows you to find all those MATLAB functions or commands that refer to or contain
the string string. This command is very useful when there is no direct support for the specified string, or to view the
help for all commands related to the given string. For example, if we want to find help for all commands that contain
the sequence inv, we can use the command lookfor inv (Figure 1-20).

Figure 1-19. 

Chapter 1 ■ Introducing MATLAB and the MATLAB Working Environment

21

Figure 1-20. 

23

Chapter 2

MATLAB Programming

2.1 MATLAB Programming
MATLAB can be used as a high-level programming language including data structures, functions, instructions for flow
control, management of inputs/outputs and even object-oriented programming.

MATLAB programs are usually written into files called M-files. An M-file is nothing more than a MATLAB code
(script) that executes a series of commands or functions that accept arguments and produce an output. The M-files
are created using the text editor.

2.1.1 The Text Editor
The Editor/Debugger is activated by clicking on the create a new M-file button in the MATLAB desktop or
by selecting File ➤ New ➤ M-file in the MATLAB desktop (Figure 2-1) or Command Window (Figure 2-2).
The Editor/Debugger opens a file in which we create the M-file, i.e. a blank file into which we will write MATLAB
programming code (Figure 2-3). You can open an existing M-file using File ➤ Open on the MATLAB desktop (Figure 2-1)
or, alternatively, you can use the command Open in the Command Window (Figure 2-2). You can also open the
Editor/Debugger by right-clicking on the Current Directory window and choosing New ➤ M-file from the resulting
pop-up menu (Figure 2-4). Using the menu option Open, you can open an existing M-file. You can open several
M-files simultaneously, each of which will appear in a different window.

Chapter 2 ■ MATLAB Programming

24

Figure 2-1. 

Figure 2-2. 

Chapter 2 ■ MATLAB Programming

25

Figure 2-3. 

Figure 2-4. 

Chapter 2 ■ MATLAB Programming

26

Figure 2-5 shows the functions of the icons in the Editor/Debugger.

2.1.2 Scripts
Scripts are the simplest possible M-files. A script has no input or output arguments. It simply consists of instructions
that MATLAB executes sequentially and that could also be submitted in a sequence in the Command Window. Scripts
operate with existing data on the workspace or new data created by the script. Any variable that is used by a script will
remain in the workspace and can be used in further calculations after the end of the script.

Below is an example of a script that generates several curves in polar form, representing flower petals. Once
the syntax of the script has been entered into the editor (Figure 2-6), it is stored in the work library (work) and
simultaneously executes by clicking the button or by selecting the option Save and run from the Debug menu
(or pressing F5). To move from one chart to the next press ENTER.

Figure 2-5. 

Figure 2-6. 

Chapter 2 ■ MATLAB Programming

27

Figure 2-7. 

Figure 2-8. 

Chapter 2 ■ MATLAB Programming

28

Figure 2-10. 

Figure 2-9. 

Chapter 2 ■ MATLAB Programming

29

2.1.3 Functions and M-files. Eval and Feval
We already know that MATLAB has a wide variety of functions that can be used in everyday work with the program.
But, in addition, the program also offers the possibility of custom defined functions. The most common way to define
a function is to write its definition to a text file, called an M-file, which will be permanent and will therefore enable the
function to be used whenever required.

MATLAB is usually used in command mode (or interactive mode), in which case a command is written in a single
line in the Command Window and is immediately processed. But MATLAB also allows the implementation of sets of
commands in batch mode, in which case a sequence of commands can be submitted which were previously written
in a file. This file (M-file) must be stored on disk with the extension “.m” in the MATLAB subdirectory, using any ASCII
editor or by selecting M-file New from the File menu in the top menu bar, which opens a text editor that will allow
you to write command lines and save the file with a given name. Selecting M-File Open from the File menu in the top
menu bar allows you to edit any pre-existing M-file.

To run an M-file simply type its name (without extension) in interactive mode into the Command Window and
press Enter. MATLAB sequentially interprets all commands and statements of the M-file line by line and executes
them. Normally the literal commands that MATLAB is performing do not appear on screen, except when the
command echo on is active and only the results of successive executions of the interpreted commands are displayed.
Normally, work in batch mode is useful when automating large scale tedious processes which, if done manually,
would be prone to mistakes. You can enter explanatory text and comments into M-files by starting each line of the
comment with the symbol %. The help command can be used to display comments made in a particular M-file.

The command function allows the definition of functions in MATLAB, making it one of the most useful
applications of M-files. The syntax of this command is as follows:

function output_parameters = function_name (input_parameters) the function body

Once the function has been defined, it is stored in an M-file for later use. It is also useful to enter some
explanatory text in the syntax of the function (using %), which can be accessed later by using the help command.

When there is more than one output parameter, they are placed between square brackets and separated by
commas. If there is more than one input parameter, they are separated by commas. The body of the function is the
syntax that defines it, and should include commands or instructions that assign values to output parameters. Each
command or instruction of the body often appears in a line that ends either with a comma or, when variables are
being defined, by a semicolon (in order to avoid duplication of outputs when executing the function). The function is
stored in the M-file named function_name.m.

Let us define the function fun1(x) = x ^ 3 - 2x + cos(x), creating the corresponding M-file fun1.m. To define this
function in MATLAB select M-file New from the File menu in the top menu bar (or click the button in the MATLAB
tool bar). This opens the MATLAB Editor/Debugger text editor that will allow us to insert command lines defining the
function, as shown in Figure 2-11.

Figure 2-11. 

Chapter 2 ■ MATLAB Programming

30

To permanently save this code in MATLAB select the Save option from the File menu at the top of the MATLAB
Editor/Debugger. This opens the Save dialog of Figure 2-12, which we use to save our function with the desired name
and in the subdirectory indicated as a path in the file name field. Alternatively you can click on the button or select
Save and run from the Debug menu. Functions should be saved using a file name equal to the name of the function
and in MATLAB’s default work subdirectory C: \MATLAB6p1\work.

Figure 2-12. 

Once a function has been defined and saved in an M-file, it can be used from the Command Window.
For example, to find the value of the function at 3p-2 we write in the Command Window:
 
>> fun1(3*pi/2)
 
ans =
 
95.2214
 

For help on the previous function (assuming that comments were added to the M-file that defines it) you use the
command help, as follows:
 
>> help fun1(x)
 
A simple function definition

A function can also be evaluated at some given arguments (input parameters) via the feval command, the syntax
of which is as follows:

feval (‘F’, arg1, arg1,..., argn)

Chapter 2 ■ MATLAB Programming

31

This evaluates the function F (the M-file F.m) at the specified arguments arg1, arg2,..., argn.
As an example we build an M-file named equation2.m which contains the function equation2, whose arguments

are the three coefficients of the quadratic equation ax2+bx+c = 0 and whose outputs are the two solutions (Figure 2-13).

Figure 2-13. 

Now if we want to solve the equation x2+2x+3 = 0 using feval, we write the following in the Command Window:
 
>> [x 1, x 2] = feval('equation2',1,2,3)
 
x 1 =
 
-1.0000 + 1. 4142i
 
x 2 =
 
-1.0000 - 1. 4142i
 

The quadratic equation can also be solved as follows:
 
>> [x 1, x 2] = equation2(1,2,3)
 
x 1 =
 
-1.0000 + 1. 4142i
 
x 2 =
 
-1.0000 - 1. 4142i
 

If we wish to ask for help about the function equation2 we do the following:
 
>> help equation2
 
This function solves the quadratic equation ax ^ 2 + bx + c = 0

whose coefficients are a, b and c (input parameters)

and whose solutions are x 1 and x 2 (output parameters)

Chapter 2 ■ MATLAB Programming

32

Evaluating a function when its arguments (input parameters) are strings is performed via the command eval,
whose syntax is as follows:

eval (expression)

This executes the expression when it is a string.
As an example, we evaluate a string that defines a magic square of order 4.

 
>> n = 4;
>> eval(['M' num2str(n) ' = magic(n)'])
 
M4 =
 
16 2 3 13
5 11 10 8
9 7 6 12
4 14 15 1

2.1.4 Local and Global Variables
Typically, each function defined as an M-file contains local variables, i.e., variables that have effect only within the
M-file, separate from other M-files and the base workspace. However, it is possible to define variables inside M-files
which can take effect simultaneously in other M-files and in the base workspace. For this purpose, it is necessary to
define global variables with the GLOBAL command whose syntax is as follows:
 
GLOBAL x y z...
 

This defines the variables x, y and z as global.
Any variables defined as global inside a function are available separately for the rest of the functions and in the

base workspace command line. If a global variable does not exist, the first time it is used, it will be initialized as an
empty array. If there is already a variable with the same name as a global variable being defined, MATLAB will send
a warning message and change the value of that variable to match the global variable. It is convenient to declare a
variable as global in every function that will need access to it, and also in the command line, in order to access it from
the base workspace. The GLOBAL command is located at the beginning of a function (before any occurrence of the
variable).

As an example, suppose that we want to study the effect of the interaction coefficients a and b in the
Lotka–Volterra predator-prey model:

¢ = -
¢ = - +

y y y y

y y y y
1 1 1 2

2 2 1 2

a
b

To do this, we create the function lotka in the M-file lotka.m as depicted in Figure 2-14.

Chapter 2 ■ MATLAB Programming

33

Later, we might type the following in the command line:
 
>> global ALPHA BETA
ALPHA = 0.01
BETA = 0.02
 

These global values may then be used for a and b in the M-file lotka.m (without having to specify them).
For example, we can generate the graph (Figure 2-15) with the following syntax:
 
>> [t, y] = ode23 ('lotka', 0.10, [1; 1]); plot(t,y) 

Figure 2-14. 

Figure 2-15. 

Chapter 2 ■ MATLAB Programming

34

2.1.5 Data Types
MATLAB has 14 different data types, summarized in Figure 2-16 below.

Figure 2-16. 

Below are the different types of data:

Data type Example Description

single 3* 10 ^ 38 Simple numerical precision. This requires less storage than double
precision, but it is less precise. This type of data should not be used
in mathematical operations.

Double 3*10^300
5+6i

Double numerical precision. This is the most commonly used data
type in MATLAB

sparse speye(5) Sparse matrix with double precision.

int8, uint8, int16,
uint16, int32,
uint32

UInt8(magic (3)) Integers and unsigned integers with 8, 16, and 32 bits. These make it
possible to use entire amounts with efficient memory management.
This type of data should not be used in mathematical operations.

char 'Hello' Characters (each character has a length of 16 bits).

cell {17 'hello' eye (2)} Cell (contains data of similar size)

structure a.day = 12;
a.color = 'Red';
a.mat = magic(3);

Structure (contains cells of similar size)

user class inline('sin (x)') MATLAB class (built with functions)

java class Java. awt.Frame Java class (defined in API or own) with Java

function handle @humps Manages functions in MATLAB. It can be last in a list of arguments
and evaluated with feval.

Chapter 2 ■ MATLAB Programming

35

2.1.6 Flow Control: FOR, WHILE and IF ELSEIF Loops
The use of recursive functions, conditional operations and piecewise defined functions is very common in
mathematics. The handling of loops is necessary for the definition of these types of functions. Naturally, the definition
of the functions will be made via M-files.

FOR Loops
MATLAB has its own version of the DO statement (defined in the syntax of most programming languages).
This statement allows you to run a command or group of commands repeatedly. For example:
 
>> for i=1:3, x(i)=0, end
 
x =
 
0
 
x =
 
0 0
 
x =
 
0 0 0
 

The general form of a FOR loop is as follows:

for variable = expression
 commands
end

The loop always starts with the clause for and ends with the clause end, and includes in its interior a whole set of
commands that are separated by commas. If any command defines a variable, it must end with a semicolon in order
to avoid repetition in the output . Typically, loops are used in the syntax of M-files. Here is an example (Figure 2-17):

Figure 2-17. 

Chapter 2 ■ MATLAB Programming

36

In this loop we have defined a Hilbert matrix of order (m, n). If we save it as an M-file matriz.m, we can build any
Hilbert matrix later by running the M-file and specifying values for the variables m and n (the matrix dimensions) as
shown below:
 
>> M = matriz(4,5)
 
M =
 
1.0000 0.5000 0.3333 0.2500 0.2000
0.5000 0.3333 0.2500 0.2000 0.1667
0.3333 0.2500 0.2000 0.1667 0.1429
0.2500 0.2000 0.1667 0.1429 0.1250 

WHILE Loops
MATLAB has its own version of the WHILE structure defined in the syntax of most programming languages. This
statement allows you to repeat a command or group of commands a number of times while a specified logical
condition is met. The general syntax of this loop is as follows:

While condition
 commands
end

The loop always starts with the clause while, followed by a condition, and ends with the clause end, and includes
in its interior a whole set of commands that are separated by commas which continually loop while the condition is
met. If any command defines a variable, it must end with a semicolon in order to avoid repetition in the output. As
an example, we write an M-file (Figure 2-18) that is saved as while1.m, which calculates the largest number whose
factorial does not exceed 10100.

Figure 2-18. 

Chapter 2 ■ MATLAB Programming

37

We now run the M-file.
 
>> while1
 
n =
 
70

IF ELSEIF ELSE END Loops
MATLAB, like most structured programming languages, also includes the IF-ELSEIF-ELSE-END structure. Using this
structure, scripts can be run if certain conditions are met. The loop syntax is as follows:
 
if condition
 commands
end
 

In this case the commands are executed if the condition is true. But the syntax of this loop may be more general.
 
if condition
 commands1
else
 commands2
end
 

In this case, the commands commands1 are executed if the condition is true, and the commands commands2
are executed if the condition is false.

IF statements and FOR statements can be nested. When multiple IF statements are nested using the ELSEIF
statement, the general syntax is as follows:
 
if condition1
 commands1
 elseif condition2
 commands2
 elseif condition3
 commands3
.
.
 else
end
 

In this case, the commands commands1 are executed if condition1 is true, the commands commands2 are
executed if condition1 is false and condition2 is true, the commands commands3 are executed if condition1 and
condition2 are false and condition3 is true, and so on.

The previous nested syntax is equivalent to the following unnested syntax, but executes much faster:
 
if condition1
 commands1
else
 if condition2
 commands2

Chapter 2 ■ MATLAB Programming

38

 else
 if condition3
 commands3
 else
.
.
 end
 end
end
 

Consider, for example, the M-file else1.m (see Figure 2-19).

Figure 2-19. 

When you run the file it returns negative, odd or even according to whether the argument n is negative,
non-negative and odd, or non-negative and even, respectively:
 
>> else1(8), else1(5), else1(-10)
 
A =
 
n is even
 
A =
 
n is odd
 
A =
 
n is negative

Chapter 2 ■ MATLAB Programming

39

SWITCH and CASE
The switch statement executes certain statements based on the value of a variable or expression. Its basic syntax is
as follows:
 
switch expression (scalar or string)
 case value1
 statements % runs if expression is value1
 case value2
 statements % runs if expression is value2
.
.
.
otherwise
 statements % runs if neither case is satisfied
 
end
 

Below is an example of a function that returns ‘minus one’, ‘zero’, ‘one’, or ‘another value’ according to whether the
input is equal to -1,0,1 or something else, respectively (Figure 2-20).

Figure 2-20. 

Running the above example we get:
 
>> case1(25)

another value
 
>> case1(- 1)

minus one

Chapter 2 ■ MATLAB Programming

40

CONTINUE
The continue statement passes control to the next iteration in a for loop or while loop in which it appears, ignoring
the remaining instructions in the body of the loop. Below is an M-file continue.m (Figure 2-21) that counts the lines of
code in the file magic.m, ignoring the white lines and comments.

Figure 2-21. 

Running the M-file, we get:
 
>> continue1

25 lines

BREAK
The break statement terminates the execution of a for loop or while loop, skipping to the first instruction which
appears outside of the loop. Below is an M-file break1.m (Figure 2-22) which reads the lines of code in the file fft.m,
exiting the loop as soon as it encounters the first empty line.

Chapter 2 ■ MATLAB Programming

41

Running the M-file we get:
 
>> break1
 
%FFT Discrete Fourier transform.
% FFT(X) is the discrete Fourier transform (DFT) of vector X. For
% matrices, the FFT operation is applied to each column. For N-D
% arrays, the FFT operation operates on the first non-singleton
% dimension.
%
% FFT(X,N) is the N-point FFT, padded with zeros if X has less
% than N points and truncated if it has more.
%
% FFT(X,[],DIM) or FFT(X,N,DIM) applies the FFT operation across the
% dimension DIM.
%
% For length N input vector x, the DFT is a length N vector X,
% with elements
% N
% X(k) = sum x(n)*exp(-j*2*pi*(k-1)*(n-1)/N), 1 <= k <= N.
% n=1
% The inverse DFT (computed by IFFT) is given by
% N
% x(n) = (1/N) sum X(k)*exp(j*2*pi*(k-1)*(n-1)/N), 1 <= n <= N.
% k=1
%
% See also IFFT, FFT2, IFFT2, FFTSHIFT.

Figure 2-22. 

Chapter 2 ■ MATLAB Programming

42

TRY... CATCH
The instructions between try and catch are executed until an error occurs. The instruction lasterr is used to show the
cause of the error. The general syntax of the command is as follows:
 
try,
 instruction
 ...,
 instruction
catch,
 instruction
 ...,
 instruction
end

RETURN
The return statement terminates the current script and returns the control to the invoked function or the keyboard.
The following is an example (Figure 2-23) that computes the determinant of a non-empty matrix. If the array is empty
it returns the value 1.

Figure 2-23. 

Running the function for a non-empty array we get:
 
>> A = [- 1, - 1, - 1; 1,0,1; 1, - 1, - 1]
 
A =

-1 -1 -1
 1 0 1
 1 -1 -1
 
>> det1(A)
 
ans =
 
2
 

Chapter 2 ■ MATLAB Programming

43

Now we apply the function to an empty array:
 
>> B = []
 
B =
 
[]
 
>> det1(B)
 
ans =
 
1

2.1.7 Subfunctions
M-file-defined functions can contain code for more than one function. The main function in an M-file is called a
primary function, which is precisely the function which invokes the M-file, but subfunctions hanging from the primary
function may be added which are only visible for the primary function or another subfunction within the same M-file.
Each subfunction begins with its own function definition. An example is shown in Figure 2-24.

Figure 2-24. 

Chapter 2 ■ MATLAB Programming

44

The subfunctions mean and median calculate the arithmetic mean and the median of the input list. The primary
function newstats determines the length n of the list and calls the subfunctions with the list as the first argument and n
as the second argument. When executing the main function, it is enough to provide as input a list of values for which
the arithmetic mean and median will be calculated. The subfunctions are executed automatically, as shown below.
 
>> [mean, median] = newstats([10,20,3,4,5,6])
 
mean =
 
8
 
median =
 
5.5000

2.1.8 Commands in M-files
MATLAB provides certain procedural commands which are often used in M-file scripts. Among them are the following:

echo on View on-screen commands of an M-file script while it is running.

echo off Hides on-screen commands of an M-file script (this is the default setting).

pause Interrupts the execution of an M-file until the user presses a key to continue.

pause(n) Interrupts the execution of an M-file for n seconds.

pause off Disables pause and pause (n).

pause on Enables pause and pause (n).

keyboard Interrupts the execution of an M-file and passes the control to the keyboard so that the user can
perform other tasks. The execution of the M-file can be resumed by typing the return command
into the Command Window and pressing Enter.

return Resumes execution of an M-file after an outage.

break Prematurely exits a loop.

CLC Clears the Command Window.

Home Hides the cursor.

more on Enables paging of the MATLAB Command Window output.

more off Disables paging of the MATLAB Command Window output.

more (N) Sets page size to N lines.

menu Offers a choice between various types of menu for user input.

Chapter 2 ■ MATLAB Programming

45

2.1.9 Functions Relating to Arrays of Cells
An array is a well-ordered collection of individual items. This is simply a list of elements, each of which is associated
with a positive integer called its index, which represents the position of that element in the list. It is essential that each
element is associated with a unique index, which can be zero or negative, which identifies it fully, so that to make
changes to any elements of the array it suffices to refer to their indices. Arrays can be of one or more dimensions,
and correspondingly they have one or more sets of indices that identify their elements. The most important
commands and functions that enable MATLAB to work with arrays of cells are the following:

c = cell(n)

c = cell(m,n)

c = cell([m n])

c = cell(m,n,p,...)

c = cell([m n p ...])

c = cell(size(A))

Creates an n×n array whose cells are empty arrays.

Creates an m×n array whose cells are empty arrays.

Creates an m×n array whose cells are empty arrays.

Creates an m×n×p×... array of empty arrays.

Creates an m×n×p×... array of empty arrays.

Creates an array of empty arrays of the same size as A.

D = cellfun(‘f ’,C)

D = cellfun(‘size’,C,k)

D = cellfun(‘isclass’,C,class)

Applies the function f (isempty, islogical, isreal, length, ndims, or prodofsize) to each
element of the array C.

Returns the size of each element of dimension k in C.

Returns true for each element of C corresponding to class.

C = cellstr(S) Places each row of the character array S into separate cells of C.

S = cell2struct(C,fields,dim) Converts the array C to a structure array S incorporating field names ‘fields’ and the
dimension ‘dim’ of C.

celldisp (C)

celldisp(C, name)

Displays the contents of the array C.

Assigns the contents of the array C to the variable name.

cellplot(C)

cellplot(C,‘legend’)

Shows a graphical representation of the array C.

Shows a graphical representation of the array C and incorporates a legend.

C = num2cell(A)

C = num2cell(A,dims)

Converts a numeric array A to the cell array C

Converts a numeric array A to a cell array C placing the given dimensions in
separate cells.

As a first example, we create an array of cells of the same size as the unit square matrix of order two.
 
>> A = ones(2,2)
 
A =

1 1
1 1
 
>> c = cell(size(A))
 
c =
 
[] []
[] []
 

Chapter 2 ■ MATLAB Programming

46

We then define and present a 2 × 3 array of cells element by element, and apply various functions to the cells.
 
>> C{1,1} = [1 2; 4 5];
C{1,2} = 'Name';
C{1,3} = pi;
C{2,1} = 2 + 4i;
C{2,2} = 7;
C{2,3} = magic(3);
 
>> C
 
C =
 
[2x2 double] 'Name' [3.1416]
[2.0000+ 4.0000i] [7] [3x3 double]
 
>> D = cellfun('isreal',C)
 
D =
 
1 1 1
0 1 1
 
>> len = cellfun('length',C)
 
len =
 
2 4 1
1 1 3
 
>> isdbl = cellfun('isclass',C,'double')
 
isdbl =
 
1 0 1
1 1 1
 

The contents of the cells in the array C defined above are revealed using the command celldisp.
 
>> celldisp(C)
 
C{1,1} =

1 2
4 5
 
C{2,1} =
 
2.0000 + 4.0000i
 

Chapter 2 ■ MATLAB Programming

47

C{1,2} =
 
Name
 
C{2,2} =
 
7
 
C{1,3} =
 
3.1416
  
C{2,3} =
 
8 1 6
3 5 7
4 9 2
 

The following displays a graphical representation of the array C (Figure 2-25).
 
>> cellplot(C)
 

Figure 2-25. 

Chapter 2 ■ MATLAB Programming

48

2.1.10 Multidimensional Array Functions
The following group of functions is used by MATLAB to work with multidimensional arrays:

C = cat(dim,A,B)

C = cat(dim,A1,A2,A3,A4...)

Concatenates arrays A and B according to the dimension dim.

Concatenates arrays A1, A2,... according to the dimension dim.

B = flipdim (A, dim) Flips the array A along the specified dimension dim.

[I,J] = ind2sub(siz,IND)

[I1,I2,I3,...,In] = ind2sub(siz,IND)

Returns the matrices I and J containing the equivalent row and column
subscripts corresponding to each index in the matrix IND for a matrix
of size siz.

Returns matrices I1, I2,...,In containing the equivalent row and column
subscripts corresponding to each index in the matrix IND for a matrix
of size siz.

A = ipermute(B,order) Inverts the dimensions of the multidimensional array D according to the
values of the vector order.

[X1, X2, X3,...] = ndgrid(x1,x2,x3,...)

[X 1, X 2,...] = ndgrid (x)

Transforms the domain specified by vectors x1, x2,... into the arrays X1,
X2,... which can be used for evaluation of functions of several variables and
interpolation.

Equivalent to ndgrid(x,x,x,...).

n = ndims(A) Returns the number of dimensions in the array A.

B = permute(A,order) Swaps the dimensions of the array A specified by the vector order.

B = reshape(A,m,n)

B = reshape(A,m,n,p,...)

B = reshape(A,[m n p...])

B = reshape(A,siz)

Defines an m×n matrix B whose elements are the columns of a.

Defines an array B whose elements are those of the array A restructured
according to the dimensions m×n×p×...

Equivalent to B = reshape(A,m,n,p,...)

Defines an array B whose elements are those of the array A restructured
according to the dimensions of the vector siz.

B = shiftdim(X,n)

[B,nshifts] = shiftdim(X)

Shifts the dimensions of the array X by n, creating a new array B.

Defines an array B with the same number of elements as X but with leading
singleton dimensions removed.

B = squeeze(A) Creates an array B with the same number of elements as A but with all
singleton dimensions removed.

IND = sub2ind(siz,I,J)

IND = sub2ind(siz,I1,I2,...,In)

Gives the linear index equivalent to the row and column indices I and J for a
matrix of size siz.

Gives the linear index equivalent to the n indices I1, I2,..., in a matrix
of size siz.

Chapter 2 ■ MATLAB Programming

49

As a first example we concatenate a magic square and Pascal matrix of order 3.
 
>> A = magic(3); B = pascal(3);
>> C = cat(4, A, B)
 
C(:,:,1,1) =
 
8 1 6
3 5 7
4 9 2
 
C(:,:,1,2) =
 
1 1 1
1 2 3
1 3 6
 

The following example flips the Rosser matrix.
 
>> R = rosser
 
R =
 
 611 196 -192 407 -8 -52 -49 29
 196 899 113 -192 -71 -43 -8 -44
-192 113 899 196 61 49 8 52
 407 -192 196 611 8 44 59 -23
 -8 -71 61 8 411 -599 208 208
 -52 -43 49 44 -599 411 208 208
 -49 -8 8 59 208 208 99 -911
 29 -44 52 -23 208 208 -911 99
 
>> flipdim(R,1)
 
ans =
 
 29 -44 52 -23 208 208 -911 99
 -49 -8 8 59 208 208 99 -911
 -52 -43 49 44 -599 411 208 208
 -8 -71 61 8 411 -599 208 208
 407 -192 196 611 8 44 59 -23
-192 113 899 196 61 49 8 52
 196 899 113 -192 -71 -43 -8 -44
 611 196 -192 407 -8 -52 -49 29
 

Chapter 2 ■ MATLAB Programming

50

Now we define an array by concatenation and permute and inverse permute its elements.
 
>> a = cat(3,eye(2),2*eye(2),3*eye(2))
 
a(:,:,1) =
 
1 0
0 1
 
a(:,:,2) =
 
2 0
0 2
 
a(:,:,3) =
 
3 0
0 3
 
>> B = permute(a,[3 2 1])
 
B(:,:,1) =
 
1 0
2 0
3 0
 
B(:,:,2) =
 
0 1
0 2
0 3
 
>> C = ipermute(B,[3 2 1])
 
C(:,:,1) =
 
1 0
0 1
 
C(:,:,2) =
 
2 0
0 2
 
C(:,:,3) =
 
3 0
0 3
 

Chapter 2 ■ MATLAB Programming

51

The following example evaluates the function f x x x e x x(,)1 2 1
1
2

2
2

= - - in the square [-2, 2] × [-2, 2] and displays it
graphically (Figure 2-26).
 
>> [X 1, X 2] = ndgrid(-2:.2:2,-2:.2:2);
Z = X 1. * exp(-X1.^2-X2.^2);
mesh (Z)
 

Figure 2-26. 

In the following example we resize a 3 × 4 random matrix to a 2 × 6 matrix.
 
>> A = rand(3,4)
 
A =
 
0.9501 0.4860 0.4565 0.4447
0.2311 0.8913 0.0185 0.6154
0.6068 0.7621 0.8214 0.7919
 
>> B = reshape(A,2,6)
 
B =
 
0.9501 0.6068 0.8913 0.4565 0.8214 0.6154
0.2311 0.4860 0.7621 0.0185 0.4447 0.7919

53

Chapter 3

Basic MATLAB Functions for Linear
and Non-Linear Optimization

3.1 Solutions of Equations and Systems of Equations
MATLAB allows you to solve equations and systems of equations using the commands below:

solve(‘equation’ , ‘x’) Solves the equation in the variable x.

syms x; solve(equ(x), x) Solves the equation equ (x) in the variable x.

solve(‘eq1,eq2,…,eqn’ , ‘x1, x2,…,xn’) Solves n simultaneous equations eq1,…, eqn (in the variables x1,…, xn).

X = linsolve (A, B) Solves A * X = B for a square matrix A, where B and X are matrices.

x = nnls (A, b) Solves A * x = b in the sense of least squares, where x is a vector (x ≥ 0).

x = lscov(A,b,V) Solves A * x = B in the least squares sense with covariance matrix
proportional to V, i.e. x minimizes (b - A*x)’*inv(V)*(b - A*x).

roots (V) Returns the roots of the polynomial whose coefficients are given by the
vector V (from highest to lowest order).

X = A\B Solves the system A * X = B.

X = A/B Solves the system X * A = B.

poly (V) Returns the coefficients of the polynomial whose roots are given by the vector V.

x = lscov(A,b,V)

[x,dx] = lscov(A,b,V)

Solves A * x = b in the least squares sense with covariance matrix
proportional to V, i.e. x minimizes (b - A*x)’*inv(V)*(b - A*x).

In addition gives the standard error of x (dx).

(continued)

Chapter 3 ■ Basic MATLAB Functions for Linear and Non-Linear Optimization

54

x = bicg(A,b)

bicg(A,b,tol)

bicg(A,b,tol,maxit)

bicg(A,b,tol,maxit,M)

bicg(A,b,tol,maxit,M1,M2)

bicg(A,b,tol,maxit,M1,M2,x0)

[x,f] = bicg(A,b,…)

Tries to solve the system Ax = b by the method of biconjugate gradients.

Solves Ax = b by specifying tolerance.

Solves Ax = b by specifying the tolerance and the maximum number of
iterations.

Solves the system inv(M) * A * x = inv (M) * b.

Solves the system inv(M) * A * x = inv (M) * b with M = M1 * M2.

Solves the system inv(M) * A * x = inv (M) * b with M = M1 * M2 and initial
value x0.

Tries to solve the system and also returns a convergence indicator f
(0 = convergence, 1 = no-convergence, 2 = ill-conditioned, 3 = stagnation and
4 = very extreme numbers).

x = bicgstab(A,b)

bicgstab(A,b,tol)

bicgstab(A,b,tol,maxit)

bicgstab(A,b,tol,maxit,M)

bicgstab(A,b,tol,maxit,M1,M2)

bicgstab(A,b,tol,maxit,M1,M2,x0)

[x,f] = bicgstab(A,b,…)

[x,f,relres] = bicgstab(A,b,…)

[x,f,relres,iter] = bicgstab(A,b,…)

Tries to solve the system Ax = b by the method of stabilized biconjugate
gradients.

Solves Ax = b by specifying tolerance.

Solve Ax = b by specifying the tolerance and the maximum number of
iterations

Solves the system inv(M) * A * x = inv (M) * b.

Solves the system inv(M) * A * x = inv (M) * b with M = M1 * M2.

Solves the system inv(M) * A * x = inv (M) * b with M = M1 * M2 and initial
value x0.

Tries to solve the system and returns a convergence indicator f
(0 = convergence, 1 = no-convergence, 2 =ill-conditioned, 3 = stagnation and
4 = very extreme numbers).

Also returns the relative residual norm(b-A*x) /norm (b).

Also returns the number of iterations.

x = cqs(A,b)

cqs(A,b,tol)

cqs(A,b,tol,maxit)

cqs(A,b,tol,maxit,M)

cqs(A,b,tol,maxit,M1,M2)

cqs(A,b,tol,maxit,M1,M2,x0)

[x,f] = cqs(A,b,…)

[x,f,relres] = cqs(A,b,…)

[x,f,relres,iter] = cqs(A,b,…)

Tries to solve the system Ax = b by the quadratic conjugate gradients method.

Solves Ax = b, specifying tolerance

Solves Ax = b, specifying the tolerance and the maximum number of
iterations.

Solves the inv system (M) * A * x = inv (M) * b.

Solves the inv system (M) * A * x = inv (M) * b with M = M1 * M2.

Solves the inv system (M) * A * x = inv (M) * b with M = M1 * M2 and initial
value x0.

Solves the system where f indicates the result (0 = convergence,
1 = no-convergence, 2 = conditional convergence, 3 = stagnation and
4 = very extreme numbers).

Also returns the relative residual norm(b-A*x) /norm (b).

Also returns the number of iterations.

(continued)

Chapter 3 ■ Basic MATLAB Functions for Linear and Non-Linear Optimization

55

x = pcg(A,b)

pcg(A,b,tol)

pcg(A,b,tol,maxit)

pcg(A,b,tol,maxit,M)

pcg(A,b,tol,maxit,M1,M2)

pcg(A,b,tol,maxit,M1,M2,x0)

[x,f] = pcg(A,b,…)

[x,f,relres] = pcg(A,b,…)

[x,f,relres,iter] = pcg(A,b,…)

Tries to solve the system Ax = b by the pre-conditioned conjugate gradients
method.

Solves Ax = b by specifying tolerance.

Solves Ax = b by specifying the tolerance and the maximum number of
iterations.

Solves the system inv(M) * A * x = inv (M) * b.

Solves the system inv(M) * A * x = inv (M) * b with M = M1 * M2.

Solves the system inv(M) * A * x = inv (M) * b with M = M1 * M2 and initial
value x0.

Tries to solve the system and returns a convergence indicator f
(0 = convergence, 1 = no-convergence, 2 = ill-conditioned, 3 = stagnation and
4 = very extreme numbers).

Also returns the relative residual norm (b-A*x) /norm (b).

Also returns the number of iterations.

x = qmr(A,b)

qmr(A,b,tol)

qmr(A,b,tol,maxit)

qmr(A,b,tol,maxit,M)

qmr(A,b,tol,maxit,M1,M2)

qmr(A,b,tol,maxit,M1,M2,x0)

[x,f] = qmr(A,b,…)

[x,f,relres] = qmr(A,b,…)

[x,f,relres,iter] = qmr(A,b,…)

Tries to solve the system Ax = b by the quasi-minimal residual method.

Solves Ax = b by specifying tolerance.

Solves Ax = b by specifying the tolerance and the maximum number of
iterations.

Solves the system inv(M) * A * x = inv (M) * b.

Solves the system inv(M) * A * x = inv (M) * b with M = M1 * M2.

Solves the system inv(M) * A * x = inv (M) * b with M = M1 * M2 and initial
value x0.

Tries to solve the system and returns a convergence indicator
f (0 = convergence, 1 = no-convergence, 2 = ill-conditioned, 3 = stagnation and
4 = very extreme numbers).

Also returns the residual waste norm (b-A*x) /norm (b).

Also returns the number of iterations.

x = gmres(A,b)

gmres(A,b,tol)

gmres(A,b,tol,maxit)

gmres(A,b,tol,maxit,M)

gmres(A,b,tol,maxit,M1,M2)

gmres(A,b,tol,maxit,M1,M2,x0)

[x,f] = gmres(A,b,…)

[x,f,relres] = gmres(A,b,…)

[x,f,relres,iter] = gmres(A,b,…)

Tries to solve the system Ax = b by the generalized minimum residual
method.

Solves Ax = b by specifying tolerance.

Solves Ax = b by specifying the tolerance and the maximum number of
iterations.

Solves the system inv(M) * A * x = inv (M) * b.

Solves the system inv(M) * A * x = inv (M) * b with M = M1 * M2.

Solves the system inv(M) * A * x = inv (M) * b with M = M1 * M2 and initial
value x0.

Tries to solve the system and returns a convergence indicator f
(0 = convergence, 1 = no-convergence, 2 = ill-convergence, 3 = stagnation and
4 = very extreme numbers).

Also returns the relative residual norm(b-A*x) /norm (b).

Also returns the number of iterations.

(continued)

Chapter 3 ■ Basic MATLAB Functions for Linear and Non-Linear Optimization

56

x = lsqr(A,b)

lsqr(A,b,tol)

lsqr(A,b,tol,maxit)

lsqr(A,b,tol,maxit,M)

lsqr(A,b,tol,maxit,M1,M2)

lsqr(A,b,tol,maxit,M1,M2,x0)

[x,f] = lsqr(A,b,…)

[x,f,relres] = lsqr(A,b,…)

[x,f,relres,iter] = lsqr(A,b,…)

Tries to solve the system Ax = b by the LSQR method.

Solves Ax = b by specifying tolerance.

Solves Ax = b by specifying the tolerance and the maximum number of
iterations.

Solves the system inv(M) * A * x = inv (M) * b.

Solves the system inv(M) * A * x = inv (M) * b with M = M1 * M2.

Solves the system inv(M) * A * x = inv (M) * b with M = M1 * M2 and initial
value x0.

Tries to solve the system and returns a convergence indicator f
(0 = convergence, 1 = no-convergence, 2 = ill-conditioned, 3 = stagnation and
4 = very extreme numbers).

Also returns the relative residual norm (b-A*x) /norm (b).

Also returns the number of iterations.

x = minres(A,b)

minres(A,b,tol)

minres(A,b,tol,maxit)

minres(A,b,tol,maxit,M)

minres(A,b,tol,maxit,M1,M2)

minres(A,b,tol,maxit,M1,M2,x0)

[x,f] = minres(A,b,…)

[x,f,relres] = minres(A,b,…)

[x,f,relres,iter] = minres(A,b,…)

Tries to solve the system Ax = b by the minimum residual method.

Solves Ax = b by specifying tolerance.

Solves Ax = b by specifying the tolerance and the maximum number of
iterations.

Solves the system inv(M) * A * x = inv (M) * b.

Solves the system inv(M) * A * x = inv (M) * b with M = M1 * M2.

Solves the system inv(M) * A * x = inv (M) * b with M = M1 * M2 and initial
value x0.

Tries to solve the system and returns a convergence indicator
f (0 = convergence, 1 = no-convergence, 2 =ill-conditioned, 3 = stagnation
and 4 = very extreme numbers).

Also returns the relative residual norm (b-A*x) /norm (b).

Also returns the number of iterations.

x = symmlq(A,b)

symmlq(A,b,tol)

symmlq(A,b,tol,maxit)

symmlq(A,b,tol,maxit,M)

symmlq(A,b,tol,maxit,M1,M2)

symmlq(A,b,tol,maxit,M1,M2,x0)

[x,flag] = symmlq(A,b,…)

[x,flag,relres] = symmlq(A,b,…)

[x,flag,relres,iter] = symmlq(A,b,…)

Tries to solve the system Ax = b by the symmetric LQ method.

Solves Ax = b by specifying the tolerance.

Solves Ax = b by specifying the tolerance and the maximum number of
iterations.

Solves the system inv(M) * A * x = inv (M) * b.

Solves the system inv(M) * A * x = inv (M) * b with M = M1 * M2.

Solves the system inv(M) * A * x = inv (M) * b with M = M1 * M2 and initial
value x0.

Tries to solve the system and returns a convergence indicator
(0 = convergence, 1 = no-convergence, 2 = ill-conditioned, 3 = stagnation and
4 = very extreme numbers).

Also returns the relative residual norm (b-A*x) /norm (b).

Also returns the number of iterations.

(continued)

Chapter 3 ■ Basic MATLAB Functions for Linear and Non-Linear Optimization

57

x = lsqnonneg(C,d)

x = lsqnonneg(C,d,x0)

x = lsqnonneg(C,d,x0,opt)

[x,resnorm] = lsqnonneg(…)

[x,resnorm,residual] = lsqnonneg(…)

[x,resnorm,residual,f] =
lsqnonneg(…)

[x,resnorm,residual,f,out,
lambda] = lsqnonneg(…)

Returns the vector x that minimizes norm(C*x−d) subject to x >=0. C and d
must be real.

Uses x0 ≥ 0 as the initial value and a possible option. The options are TolX
for termination tolerance on x and Display to show the output (‘off’ does
not display output, ‘final’ shows just the final output and ‘notify’ shows the
output only if there is no convergence).

Returns the value of the squared 2-norm of the residual: norm(C*x−d)^2. In
addition returns the residual C * x-d.

In addition gives a convergence indicator f (positive indicates convergence,
0 indicates non-convergence).

In addition to the above, returns output data describing the algorithm used,
iterations taken and exit message, and also the vector of Lagrange multipliers
lambda.

x = fzero x0 (function) Returns a zero of the function near x0.

[x, feval] = fzero x0 (fun) Also gives the objective value of the function at x.

[x, feval, f] = fzero x0 (fun) Returns f > 0 if a zero x was found and F<0 otherwise.

S = spaugment (A, c) Creates the sparse, square symmetric indefinite matrix S = [c*I A; A' 0].
The matrix S is related to the least squares problem.

As a first example we find the roots of the equation 2x3+ 11x2+ 12x– 9 - 0. Since it is a polynomial we use the
function roots as follows:
 
>> roots([2, 11, 12, - 9])
 
ans =
 
-3.0000
-3.0000
 0.5000
 

The above equation also can be solved as follows:
 
>> solve('2*x^3+11*x^2+12*x-9','x')
  
ans =
  
[1/2]
[-3]
[-3]
 

Chapter 3 ■ Basic MATLAB Functions for Linear and Non-Linear Optimization

58

The equation xsin(x) = 1/2 can be solved in neighborhoods of 2, 4 and 6 as follows:
 
>> [fzero('x * sin (x) - 1/2 ', 2), fzero('x * sin (x) - 1/2 ', 4), fzero('x * sin (x) - 1/2 ', 6)]
 
ans =
 
0.7408 2.9726 6.3619
 

The system of equations x+y+z= 1, 3x+y= 3, x-2y-z= 0 can be solved as follows:
 
>> [x, y, z] = solve('x+y+z=1', '3*x+y=3', 'x-2*y-z=0','x','y','z')
  
x =
  
4/5
  
y =
  
3/5
  
z =
  
-2/5
 

The following alternative syntax could have been used:
 
>> [x, y, z] = solve('x+y+z=1, 3*x+y=3, x-2*y-z=0','x,y,z')
  
x =
  
4/5
  
y =
  
3/5
  
z =
  
-2/5
 

It is also possible to use the following syntax:
 
>> A = [1,1,1;3,1,0;1,-2,-1]; B = [1,3,0]'; linsolve (A, B)
  
ans =
  
[4/5]
[3/5]
[-2/5]
 

Chapter 3 ■ Basic MATLAB Functions for Linear and Non-Linear Optimization

59

Or even the following:
 
>> A\B
 
ans =
 
 0.8000
 0.6000
-0.4000
 

The system can also be solved using approximation methods (however, in this case this is not necessary). For
example, we could try to use the least squares method. The syntax is as follows:
 
>> lsqr(A,B)
 
lsqr stopped at iteration 3 without converging to the desired tolerance 1e-006
because the maximum number of iterations was reached.
The iterate returned (number 3) has relative residual 0.084
 
ans =
 
 0.8558
 0.3542
-0.0448
 

3.2 Working with Polynomials
MATLAB implements specific commands for working with polynomials, such as finding their roots, differentiation
and interpolation. The following table shows the syntax of the most important of these commands.

q = conv(u,v) Gives the coefficients of the polynomial product of two polynomials whose coefficients
are given by the vectors u and v.

[q, r] = deconv(v,u) Gives the polynomial quotient and remainder of the division between polynomials u
and v, so that v = conv (u, q) + r.

p = poly (r) Gives the coefficients of the polynomial p whose roots are specified by the vector r.

k = polyder(p)

k = polyder(a,b)

[q,d] = polyder(a,b)

Gives the coefficients k of the derivative of the polynomial p.

Gives the coefficients k of the derivative of the product of polynomials a and b.

Gives the numerator q and denominator d of the derivative of a/b.

p = (x, y, n) polyfit

[p,S] = polyfit(x,y,n)

[p, S, u] = polyfit (x, y, n)

Finds the polynomial of degree n which is the best fit of the set of points (x, y).

Finds the polynomial of degree n which is the best fit of the set of points (x, y) and also
returns structure data S of the fit.

Finds the coefficients of the polynomial in x x m s = -()/ which best fits the data, and
also returns the structure data S and the row vector u=[m,s], where m is the mean and s
is the standard deviation of the data x.

(continued)

Chapter 3 ■ Basic MATLAB Functions for Linear and Non-Linear Optimization

60

y = polyval(p,x)

y = polyval(p,x,[],u)

[y, delta] = polyval (p, x, S)

[y, delta] = polyval(p,x,S,u)

Evaluates the polynomial p at x.

If u=[m,s], evaluates the polynomial p at x x m s = -()/ .

Uses the optional output structure S generated by polyfit to generate error estimates
delta.

Does the above with x x m s = -()/ in place of x, where u[m,s].

Y = polyvalm (p, X) For a polynomial p and a matrix X, evaluates p(X) in the matrix sense.

[r,p,k] = residue(b,a)

[b,a] = residue(r,p,k)

Finds the residues, poles and direct term of the rational expansion of b/a.

b s

a s

r

s p

r

s p

r

s p
k sn()

()
()=

-
+

-
+ +

-
+1

1

2

2



n .

Converts the partial fraction expansion back into a quotient of polynomials.

r = roots (c) Gives the column vector r of the roots of the polynomial with coefficients c.

As a first example, we calculate the roots of the polynomial x3 − 6x2 − 72x − 27.
 
>> p = [1 -6 -72 -27]; r = roots(p)
 
r =
 
12.1229
-5.7345
-0.3884
 

Next we evaluate the polynomial x3 − 6x2 − 72x − 27 first at the Pascal matrix of order 4 and then at the integer 10.
 
>> Y = polyval (p, pascal(4))
 
Y =
 
-104 -104 -104 -104
-104 -187 -270 -347
-104 -270 -459 -347
-104 -347 -347 -4133
 
>> polyval(p,10)
 
ans =
 
-347
 

Chapter 3 ■ Basic MATLAB Functions for Linear and Non-Linear Optimization

61

In the following example we define a vector x of equally spaced points in the interval [0, 2.5], evaluate the
function erf (x) at these points and find the approximate coefficients of the polynomial of degree 6 which best fits the
points (x, erf (x)).
 
>> x = (0: 0.1: 2.5)'; y = erf(x), p = polyfit(x,y,6)
 
p =
 
0.0084 -0.0983 0.4217 -0.7435 0.1471 1.1064 0.0004
 

We then calculate the derivative of both the product and the quotient of the polynomials (3x2 + 6x + 9) and (x2 + 2x).
 
>> a = [3 6 9];
b = [1 2 0];
k = polyder(a,b)
 
k =
 
12 36 42 18
 

The derivative of the product is therefore the polynomial 12x3 + 36x2 + 42x + 18.
 
>> [q,d] = polyder(b,a)
 
q =
 
18 18
 
d =
 
9 36 90 108 81
 

The derivative of the quotient is therefore
18 18

9 36 90 108 814 3 2

x

x x x x

+
+ + + +

.

EXERCISE 3-1

Solve the following equations:

x 3/2 log(x) = x log(x 3/2), sqrt[1−x] + sqrt[1 + x] = a, x 4 −1 = 0 and sin(z) = 2.
 
>> s1 = solve('x^(3/2)*log(x) = x*log(x)^(3/2)')
  
s1 =
  
[-lambertw(-1)]
[1]
  

Chapter 3 ■ Basic MATLAB Functions for Linear and Non-Linear Optimization

62

>> s2 = solve('sqrt(1-x)+sqrt(1+x) = a','x')
  
s2 =
  
[1/2*a*(-a^2+4)^(1/2)]
[-1/2*a*(-a^2+4)^(1/2)]
  
>> s3 = solve('x^4-1=0')
  
s3 =
  
[1]
[-1]
[i]
[-i]
  
>> s4=solve('sin(z)=2')
  
S4 =
  
asin(2)
 

The solution of the first equation is better interpreted by passing it to numeric format as follows:
 
>> numeric(s1)
 
ans =
 
0.3181 - 1.3372i
1.0000 

EXERCISE 3-2

Solve the following system of two equations:

cos(x/12) /exp(x2/16) = y

−5/4 + y = sin(x3/2)
 
>> [x, y] = solve('cos(x/12) /exp(x^2/16) = y','-5/4 + y = sin(x ^(3/2))')
  
x =
  
-.18864189802267887925036526820236.-. 34569744170126319331033283636228 * i
  
y =
  
5/4+sin((-.14259332915370291604677691198415-.51515304994330991250882243014347e-2*i)*3^(1/2)) 

Chapter 3 ■ Basic MATLAB Functions for Linear and Non-Linear Optimization

63

EXERCISE 3-3

Study and solve the system:

x + 2y + 3z = 6

x + 3y + 8z = 19

2x + 3y + z = −1

5x + 6y + 4z = 5
 
>> A = [1,2,3;1,3,8;2,3,1;5,6,4]
 
A =
 
1 2 3
1 3 8
2 3 1
5 6 4
 
>> B = [1,2,3,6;1,3,8,19;2,3,1,-1;5,6,4,5]
 
B =
 
1 2 3 6
1 3 8 19
2 3 1 -1
5 6 4 5
 
>> [rank(A), rank(B)]
 
ans =
 
3 3
 
>> b = [6, 19, -1, 5]
 
b =
 
19 -6 -5 -1
 

Chapter 3 ■ Basic MATLAB Functions for Linear and Non-Linear Optimization

64

We see that the ranks of A and B coincide and their common value is 3, which is equal to the number of
unknowns in the system. Therefore, the system will have a unique solution. We can find this solution with the
command linsolve:
 
>> X = linsolve(A,b')
  
X =
  
[1]
[-2]
[3]
 
We can also solve the system in the following way:
 
>> A\b'
 
ans =
 
 1.0000
-2.0000
 3.0000 

EXERCISE 3-4

Study and solve the system:

2x + y + z + t = 1

x + 2y + z + t = 1

x + y + z + 2t = 1

x + y + z + 2t = 1
 
>> A = [2,1,1,1;1,2,1,1;1,1,2,1;1,1,1,2];
>> B = [2,1,1,1,1;1,2,1,1,1;1,1,2,1,1;1,1,1,2,1];
>> [rank(A), rank(B)]
 
ans =
 
4 4
 
>> b = [1,1,1,1]';
 

Chapter 3 ■ Basic MATLAB Functions for Linear and Non-Linear Optimization

65

We see that the matrices A and B (the augmented matrix) both have rank 4, which also coincides with the number
of unknowns. Thus the system has a unique solution. To calculate the solution we can use any of the commands
shown below.
 
>> x = nnls(A,b)
 
x =
 
0.2000
0.2000
0.2000
0.2000
 
>> x = bicg(A,b)
bicg converged at iteration 1 to a solution with relative residual 0
 
x =
 
0.2000
0.2000
0.2000
0.2000
 
>> x = bicgstab(A,b)
bicgstab converged at iteration 0.5 to a solution with relative residual 0
 
x =
 
0.2000
0.2000
0.2000
0.2000
 
>> x = pcg(A,b)
pcg converged at iteration 1 to a solution with relative residual 0
 
x =
 
0.2000
0.2000
0.2000
0.2000
 
>> gmres(A,b)
gmres converged at iteration 1 to a solution with relative residual 0
 
ans =
 
0.2000
0.2000
0.2000
0.2000
 

Chapter 3 ■ Basic MATLAB Functions for Linear and Non-Linear Optimization

66

>> x = lsqr(A,b)
lsqr converged at iteration 2 to a solution with relative residual 0
 
x =
 
0.2000
0.2000
0.2000
0.2000
 
>> A\b'
 
ans =
 
0.2000
0.2000
0.2000
0.2000 

67

Chapter 4

Optimization by Numerical Methods:
Solving Equations

4.1 Non-Linear Equations
MATLAB is able to implement a number of algorithms which provide numerical solutions to certain problems which
play a central role in the solution of non-linear equations. Such algorithms are easy to construct in MATLAB and are
stored as M-files. From previous chapters we know that an M-file is simply a sequence of MATLAB commands or
functions that accept arguments and produces output. The M-files are created using the text editor.

4.1.1 The Fixed Point Method for Solving x = g(x)
The fixed point method solves the equation x = g(x), under certain conditions on the function g, using an iterative
method that begins with an initial value p

0
 (a first approximation to the solution) and defines p

k+ 1
 = g(p

k
). The fixed

point theorem ensures that, in certain circumstances, this sequence will converges to a solution of the equation
x = g(x). In practice the iterative process will stop when the absolute or relative error corresponding to two consecutive
iterations is less than a preset value (tolerance). The smaller this value, the better the approximation to the solution
of the equation.

This simple iterative method can be implemented using the M-file shown in Figure 4-1.

Chapter 4 ■ Optimization by Numerical Methods: Solving Equations

68

As an example we solve the following non-linear equation:

x x- =-2 0.

In order to apply the fixed point algorithm we write the equation in the form x = g(x) as follows:

x g xx- =-2 ().

We will start by finding an approximate solution which will be the first term p
0
. To plot the x axis and the curve

defined by the given equation on the same graph we use the following syntax (see Figure 4-2):
 
>> fplot('[x-2^(-x), 0]',[0, 1])
 

Figure 4-1. 

Chapter 4 ■ Optimization by Numerical Methods: Solving Equations

69

The graph shows that one solution is close to x = 0.6. We can take this value as the initial value. We choose
p

0
 = 0.6. If we consider a tolerance of 0.0001 for a maximum of 1000 iterations, we can solve the problem once we have

defined the function g(x) in the M-file g1.m (see Figure 4-3).

Figure 4-2. 

Figure 4-3. 

We can now solve the equation using the MATLAB syntax:
 
>> [k, p] = fixedpoint('g1',0.6,0.0001,1000)
 
k =
 
10
 
p =
 
0.6412
 

Chapter 4 ■ Optimization by Numerical Methods: Solving Equations

70

We obtain the solution x = 0.6412 at the 1000th iteration. To check if the solution is approximately correct, we
must verify that g1(0.6412) is close to 0.6412.
 
>> g1 (0.6412)
 
ans =
 
0.6412
 

Thus we observe that the solution is acceptable.

4.1.2 Newton’s Method for Solving the Equation f(x) = 0
Newton’s method (also called the Newton–Raphson method) for solving the equation f (x) = 0, under certain
conditions on f, uses the iteration

x
r+1

 = x
r
 − f (x

r
) /f '(x

r
)

for an initial value x
0
 close to a solution.

The M-file in Figure 4-4 shows a program which solves equations by Newton’s method to a given precision.

Figure 4-4. 

As an example we solve the following equation by Newton’s method:

x x x2 0 15 0- - + =sin(.) .

The function f (x) is defined in the M-filef1.m (see Figure 4-5), and its derivative f'(x) is given in the M-file derf1.m
(see Figure 4-6).

Chapter 4 ■ Optimization by Numerical Methods: Solving Equations

71

We can now solve the equation up to an accuracy of 0.0001 and 0.000001 using the following MATLAB syntax,
starting with an initial estimate of 1.5:
 
>> [x,it] = newton('f1','derf1',1.5,0.0001)
 
x =
 
1.6101
 
 
it =
 
2
 
>> [x,it] = newton('f1','derf1',1.5,0.000001)
 
x =
 
1.6100
 
it =
 
3
 

Figure 4-5. 

Figure 4-6. 

Chapter 4 ■ Optimization by Numerical Methods: Solving Equations

72

Thus we have obtained the solution x = 1.61 in just 2 iterations with a precision of 0.0001 and in just 3 iterations
with a precision of 0.000001.

4.1.3 Schröder’s Method for Solving the Equation f(x) = 0
Schröder’s method, which is similar to Newton’s method, solves the equation f (x) = 0, under certain conditions on f,
via the iteration

x
r+1

 = x
r
 − mf (x

r
) /f '(x

r
)

for an initial value x
0
 close to a solution, and where m is the order of multiplicity of solution being sought.

The M-file shown in Figure 4-7 gives the function that solves equations by Schröder’s method to a given
precision.

Figure 4-7. 

4.2 Systems of Non-Linear Equations
As for differential equations, it is possible to implement algorithms with MATLAB that solve systems of non-linear
equations using classical iterative numerical methods.

Among a diverse collection of existing methods we will consider the Seidel and Newton–Raphson methods.

Chapter 4 ■ Optimization by Numerical Methods: Solving Equations

73

4.2.1 The Seidel Method
The Seidel method for solving systems of equations is a generalization of the fixed point iterative method for single
equations.

In the case of a system of two equations x = g
1
 (x, y) and y = g

2
 (x, y) the terms of the iteration are defined as:

p
k+1

 = g
1
 (p

k
, q

k
) and q

k+1
 = g

2
 (p

k
, q

k
).

Similarly, in the case of a system of three equations x = g
1
 (x, y, z), y = g

2
 (x, y, z) and y = g

3
 (x, y, z) the terms of the

iteration are defined as:

p
k+1

 = g
1
 (p

k
, q

k
, r

k
), q

k+1
 = g

2
 (p

k
, q

k
, r

4
) and r

k+1
 = g

3
 (p

k
, q

k
, r

4
).

The M-file shown in Figure 4-8 gives a function which solves systems of equations using Seidel’s method up to a
specified accuracy.

Figure 4-8. 

4.2.2 The Newton-Raphson Method
The Newton–Raphson method for solving systems of equations is a generalization of Newton’s method for single
equations.

The idea behind the algorithm is familiar. The solution of the system of non-linear equations F(X) = 0 is obtained
by generating from an initial approximation P

0
 a sequence of approximations P

k
 which converges to the solution.

Figure 4-9 shows the M-file containing the function which solves systems of equations using the Newton–Raphson
method up to a specified degree of accuracy.

Chapter 4 ■ Optimization by Numerical Methods: Solving Equations

74

As an example we solve the following system of equations by the Newton–Raphson method:

x2 – 2x – y = −0.5

x2 + 4y2 – 4 = 0

taking as an initial approximation to the solution P = [2 3].
We start by defining the system F(X) = 0 and its Jacobian matrix JF according to the M-files F.m and JF.m shown in

Figures 4-10 and 4-11.

Figure 4-9. 

Chapter 4 ■ Optimization by Numerical Methods: Solving Equations

75

Then the system is solved with a tolerance of 0.00001 and with a maximum of 100 iterations using the following
MATLAB syntax:
 
>> [P,it,absoluteerror] = raphson('F','JF',[2 3],0.00001,0.00001,100)
 
P =
 
1.9007 0.3112
 
it =
 
6
 
absoluteerror =
 
8. 8751e-006
 

The solution obtained in 6 iterations is x = 1.9007, y = 0.3112, with an absolute error of 8.8751e- 006.

Figure 4-10. 

Figure 4-11. 

Chapter 4 ■ Optimization by Numerical Methods: Solving Equations

76

EXERCISE 4-1

Solve the following non-linear equation using the fixed point iterative method:

x = cos(sin(x))

We will start by finding an approximate solution to the equation, which we will use as the initial value p0. To do
this we show the x axis and the curve y = x-cos(sin(x)) on the same graph (Figure 4-12) by using the following
command:
 
>> fplot([x-cos (sin (x)), 0], [- 2, 2])
 

Figure 4-12. 

The graph indicates that there is a solution close to x = 1, which is the value that we shall take as our initial
approximation to the solution, i.e. p0 = 1. If we consider a tolerance of 0.0001 for a maximum number of 100
iterations, we can solve the problem once we have defined the function g(x) = cos(sin(x)) via the M-file g91.m
shown in Figure 4-13.

Chapter 4 ■ Optimization by Numerical Methods: Solving Equations

77

We can now solve the equation using the MATLAB command:
 
>> [k, p, absoluteerror, P] = fixedpoint('g91',1,0.0001,1000)
 
k =
 
13
 
p =
 
0.7682
 
absoluteerror =
 
6. 3361e-005
 
P =
 
1.0000
0.6664
0.8150
0.7467
0.7781
0.7636
0.7703
0.7672
0.7686
0.7680
0.7683
0.7681
0.7682
 
The solution is x = 0.7682, which has been found in 13 iterations with an absolute error of 6.3361e- 005. Thus,
the convergence to the solution is particularly fast.

Figure 4-13. 

Chapter 4 ■ Optimization by Numerical Methods: Solving Equations

78

EXERCISE 4-2

Using Newton’s method calculate the root of the equation x 3 − 10 x 2 + 29 x − 20 = 0 close to the point x = 7 with
an accuracy of 0.00005. Repeat the same calculation but with an accuracy of 0.0005.

We define the function f (x) =x 3 − 10x 2 + 29x − 20 and its derivative via the M-files named f302.m and f303.m
shown in Figures 4-14 and 4-15.

Figure 4-14. 

Figure 4-15. 

To run the program that solves the equation, type:
 
>> [x, it] = newton('f302','f303',7,.00005)
 
x =
 
5.0000
 
it =
 
6
 
In 6 iterations and with an accuracy of 0.00005 the solution x = 5 has been obtained. In 5 iterations and with an
accuracy of 0.0005 we get the solution x = 5.0002:
 

Chapter 4 ■ Optimization by Numerical Methods: Solving Equations

79

>> [x, it] = newton('f302','f303',7,.0005)
 
x =
 
5.0002
 
it =
 
5
 

EXERCISE 4-3

Write a program that calculates a root with multiplicity 2 of the equation (e–x −x)2 = 0 close to the point x = –2 to
an accuracy of 0.00005.

We define the function f (x)=(ex – x)2 and its derivative via the M-files f304.m and f305.m shown in Figures 4-16
and 4-17:

Figure 4-16. 

Figure 4-17. 

Chapter 4 ■ Optimization by Numerical Methods: Solving Equations

80

We solve the equation using Schröder’s method. To run the program we enter the command:
 
>> [x,it] = schroder('f304','f305',2,-2,.00005)
 
x =
 
0.5671
 
it =
 
5
 
In 5 iterations we have found the solution x = 0.56715.

81

Chapter 5

Optimization Using Symbolic
Computation

5.1 Symbolic Equations and Systems of Equations
The following commands can be used for the solution of symbolic equations and systems of equations:

solve(‘equation’, ‘x’) Solves the equation in the variable x.

syms x; solve(equation,x) Solves the equation in the variable x.

solve('e1,e2,…,en', 'x1,x2,…,xn') Solves the system of equations e1,…, en in the variables x1, ... , xn.

syms x1 x2… xn;

solve(e1,e2,…,en, x1,x2,…,xn)

Solve the system of equations e1,…, en in the variables x1, … , xn.

As a first example we solve the equation 3ax − 7x2 + x3 = 0 in terms of x, where a is a parameter.
 
>> solve('3*a*x-7*x^2+x^3=0','x')
 
ans =
 
[0]
[7/2 + 1/2 *(49-12*a) ^(1/2)]
[7/2-1/2 *(49-12*a) ^(1/2)]
 

Next we solve the above equation where a is the variable and x is the parameter.
 
>> pretty(solve('3*a*x-7*x^2+x^3=0','a'))
 
-1/3 x (- 7 + x)
 

Chapter 5 ■ Optimization Using Symbolic Computation

82

In the following example, we calculate the fourth roots of −1 and 1.
 
>> S = solve('x^4+1=0')
 
S =
 
[1/2*2^(1/2)+1/2*i*2^(1/2)]
[-1/2*2^(1/2)-1/2*i*2^(1/2)]
[1/2*2^(1/2)-1/2*i*2^(1/2)]
[-1/2*2^(1/2)+1/2*i*2^(1/2)]
 
>> numeric(S)
 
ans =
 
 0.70710678118655 + 0.70710678118655i
-0.70710678118655 - 0.70710678118655i
 0.70710678118655 - 0.70710678118655i
-0.70710678118655 + 0.70710678118655i
 
>> S1 = solve('x^4-1=0')
 
S1 =
 
[1]
[-1]
[i]
[-i]
 

Next we calculate the fifth roots of the complex number 2 + 2i.
 
>> numeric(solve('x^5-(2+2*i)=0'))
 
ans =
 
 1.21598698264961 + 0.19259341768888i
 0.19259341768888 + 1.21598698264961i
-1.09695770450838 + 0.55892786746601i
-0.87055056329612 - 0.87055056329612i
 0.55892786746601 1.09695770450838i
 

Chapter 5 ■ Optimization Using Symbolic Computation

83

In the following example we solve the equation sin(x)cos(x)=a in the variable x:
 
>> simple(solve('sin (x) * cos (x) = a', 'x'))
 
ans =
  
pi/2 - asin(2*a)/2
 asin(2*a)/2
 
>> pretty(ans)
 
 +- -+
 | pi asin(2 a) |
 | -- - --------- |
 | 2 2 |
 | |
 | asin(2 a) |
 | --------- |
 | 2 |
 +- -+
 

If we solve the above equation for the particular case a= 0 we get:
 
>> solve('sin (x) * cos (x) = 0', 'x')
 
ans =
 
[0]
[1/2 * pi]
[-1/2 * pi]
 

In the following example we solve the system u + v + w = a, 3u + v = b, u - 2v - w = 0, where u, v and w are variables
and a, b and c parameters.
 
>> syms u v w a b c
>> [u, v, w] = solve('u+v+w=a,3*u+v=b,u-2*v-w=c',u,v,w)
 
u =
 
1/5 * b + 1/5 * + 1/5 * c
 
v =
 
2/5 * b-3/5 * a-3/5 * c
 
w =
 
-3/5 * b + 7/5 * + 2/5 * c
 

Chapter 5 ■ Optimization Using Symbolic Computation

84

EXERCISE 5-1

Find the intersection of the hyperbolas with equations x2 - y 2 = 1 and y 2x 2 - b 2y 2 = 16 with the parabola z 2 = 2x.

We solve the system of three equations as follows:
 
>> [x, y, z] = solve('a^2*x^2-b^2*y^2=16','x^2-y^2=1','z^2=2*x', 'x,y,z')
 
x =
 
[1/2*(((b^2-16)/(a^2-b^2))^(1/4)+i*((b^2-16)/(a^2-b^2))^(1/4))^2]
[1/2*(((b^2-16)/(a^2-b^2))^(1/4)+i*((b^2-16)/(a^2-b^2))^(1/4))^2]
[1/2*(-((b^2-16)/(a^2-b^2))^(1/4)+i*((b^2-16)/(a^2-b^2))^(1/4))^2]
[1/2*(-((b^2-16)/(a^2-b^2))^(1/4)+i*((b^2-16)/(a^2-b^2))^(1/4))^2]
[1/2*(((b^2-16)/(a^2-b^2))^(1/4)-i*((b^2-16)/(a^2-b^2))^(1/4))^2]
[1/2*(((b^2-16)/(a^2-b^2))^(1/4)-i*((b^2-16)/(a^2-b^2))^(1/4))^2]
[1/2*(-((b^2-16)/(a^2-b^2))^(1/4)-i*((b^2-16)/(a^2-b^2))^(1/4))^2]
[1/2*(-((b^2-16)/(a^2-b^2))^(1/4)-i*((b^2-16)/(a^2-b^2))^(1/4))^2]
 
y =
 
[1/(a^2-b^2)*(-(a^2-b^2)*(a^2-16))^(1/2)]
[-1/(a^2-b^2)*(-(a^2-b^2)*(a^2-16))^(1/2)]
[1/(a^2-b^2)*(-(a^2-b^2)*(a^2-16))^(1/2)]
[-1/(a^2-b^2)*(-(a^2-b^2)*(a^2-16))^(1/2)]
[1/(a^2-b^2)*(-(a^2-b^2)*(a^2-16))^(1/2)]
[-1/(a^2-b^2)*(-(a^2-b^2)*(a^2-16))^(1/2)]
[1/(a^2-b^2)*(-(a^2-b^2)*(a^2-16))^(1/2)]
[-1/(a^2-b^2)*(-(a^2-b^2)*(a^2-16))^(1/2)]
 
z =
 
[((b^2-16)/(a^2-b^2))^(1/4)+i*((b^2-16)/(a^2-b^2))^(1/4)]
[((b^2-16)/(a^2-b^2))^(1/4)+i*((b^2-16)/(a^2-b^2))^(1/4)]
[-((b^2-16)/(a^2-b^2))^(1/4)+i*((b^2-16)/(a^2-b^2))^(1/4)]
[-((b^2-16)/(a^2-b^2))^(1/4)+i*((b^2-16)/(a^2-b^2))^(1/4)]
[((b^2-16)/(a^2-b^2))^(1/4)-i*((b^2-16)/(a^2-b^2))^(1/4)]
[((b^2-16)/(a^2-b^2))^(1/4)-i*((b^2-16)/(a^2-b^2))^(1/4)]
[-((b^2-16)/(a^2-b^2))^(1/4)-i*((b^2-16)/(a^2-b^2))^(1/4)]
[-((b^2-16)/(a^2-b^2))^(1/4)-i*((b^2-16)/(a^2-b^2))^(1/4)] 

85

Chapter 6

Optimization Techniques Via
The Optimization Toolbox

6.1 The Optimization Toolbox
The Optimization Toolbox provides algorithms for solving a wide range of optimization problems. It contains routines
that put into practice the most widely used methods for minimization and maximization.

The toolbox includes state-of-the-art algorithms for constrained and restricted non-linear minimization, minimax
optimization, objective achievement, semi-infinitely constrained minimization, quadratic and linear programming,
non-linear least-squares optimization, the solution of non-linear equations and constrained linear least-squares systems.

The toolbox also contains algorithms for large-scale specialized scattering problems and data curve fitting.
The environment works with scalar, vector or matrix entries. Optimization functions can be written as interactive
functions or saved in the MATLAB command line.

6.1.1 Standard Algorithms
The toolbox implements the current state of the art in optimization algorithms. The main algorithms for non-limited
minimization are the BFGS quasi-Newton method and the Nelder-Mead direct search method. Sequential quadratic
programming (SQP) variations are used for minimization with boundaries, achievement of objectives and semi-infinitely
constrained optimization. Non-linear least-squares problems are solved using the Gauss–Newton or Levenberg-Marquardt
methods. Routines to solve linear and quadratic programming problems use an active-set method combined with
imaging techniques. The routines provide a range of algorithms and linear research strategies. Linear research
strategies are protected methods of quadratic and cubic interpolation and extrapolation.

6.1.2 Large Scale Algorithms
The Optimization Toolbox also includes algorithms for problems with dispersion or structure. Large scale methods
make use of MATLAB’s treatment of sparse matrices. The toolbox includes algorithms to solve linear programming
problems, non-linear least squares with limits, non-linear unconstrained minimization, non-linear minimization
with constrained limits, non-linear minimization with linear equalities, solving non-linear systems of equations,
quadratic minimization with limits restrictions, quadratic minimization with linear equalities and limit-constrained
linear least-squares optimization. Is also implements a new large scale linear programming algorithm. This algorithm
is based on Zhang Yin’s method 1 LIPSOL (Linear programming Interior-Point SOLver), a primal-dual interior point
algorithm based on Mahrota’s method of prediction-correction. There are also large scale methods available for
some formulations of quadratic programming and non-linear objectives with linear constraints or limit restrictions.
These methods are trust region algorithms, developed by Thomas F. Coleman, and reflective and projective Newton
methods used to manage restrictions.

http://www.mathworks.es/products/optimization/description/lsalgorithms.shtml#reference%23reference

Chapter 6 ■ Optimization Techniques Via The Optimization Toolbox

86

6.2 Minimization Algorithms
Most multivariate minimization techniques (with and without restriction) are implemented as specific functions in
MATLAB’s Optimization Toolbox.

The minimization functions provided by the Optimization Toolbox are summarized in the following table.

fgoalattain Solves multiobjective goal attainment problems

fminbnd Finds the minimum of a single-variable function on fixed interval

fmincon Finds the minimum of a constrained non-linear multivariable function

fminimax Solves minimax constraint problems

fminsearch

fminunc

Finds the minimum of an unconstrained multivariable function using a derivative-free method

Finds the minimum of an unconstrained multivariable function

fseminf Finds the minimum of a semi-infinitely constrained multivariable non-linear function

linprog Solves linear programming problems

quadprog Quadratic programming

6.2.1 Multiobjective Problems
A general multiobjective problem may be defined as follows:

minimize
x ,g g

subject to the following restrictions:

F x weight goal

c x

ceq x

A x b

Aeq x beg

lb x ub

() .

()

()

- £
£
=

× £
× =

£ £

g
0

0

where ‘x’, ‘weight’, ‘goal’, ‘b’, ‘beq’, ‘lb’, and ‘ub’, are vectors, A and Aeq are matrices, and c (x), ceq (x), and F (x) are
functions that return vectors. F (x), c(x) and ceq (x) may be non-linear functions.

The function fgoalattain solves such problems with the following syntax:
 
x = fgoalattain(fun,x0,goal,weight)
x = fgoalattain(fun,x0,goal,weight,A,b)
x = fgoalattain(fun,x0,goal,weight,A,b,Aeq,beq)
x = fgoalattain(fun,x0,goal,weight,A,b,Aeq,beq,lb,ub)
x = fgoalattain(fun,x0,goal,weight,A,b,Aeq,beq,lb,ub,nonlcon)
x = fgoalattain(fun,x0,goal,weight,A,b,Aeq,beq,...
 lb,ub,nonlcon,options)
x = fgoalattain(fun,x0,goal,weight,A,b,Aeq,beq,...
 lb,ub,nonlcon,options,P1,P2,...)

Chapter 6 ■ Optimization Techniques Via The Optimization Toolbox

87

[x,fval] = fgoalattain(...)
[x,fval,attainfactor] = fgoalattain(...)
[x,fval,attainfactor,exitflag] = fgoalattain(...)
[x,fval,attainfactor,exitflag,output] = fgoalattain(...)
[x,fval,attainfactor,exitflag,output,lambda] = fgoalattain(...)
 

The various different forms of the syntax above cover particular cases of the general problem. It begins by
considering the problem in its simplest form and then gradually extends it to wider generalizations. The solution
of the problem is x, and fval is the objective value of the function at x. The amount of over- or underachievement
of the goals is indicated by attainfactor, exitflag is an indicator of output, output provides information about the
optimization process and lambda contains information concerning Lagrange multipliers.

As an example, we consider a driver K that produces a closed-loop system:

x A BKC x Bu

y Cx

= +() +

=

The eigenvalues of the system are determined by the matrices A, B, C, K using eig(A+B*K*C). The eigenvalues
should be on the real axis or in the complex plane. In addition, to avoid saturating the entries of K, elements must be
between − 4 and 4. This is an unstable system with two inputs and two outputs with an open loop and the following
state space matrices:

A B C=
-

-
-

é

ë

ê
ê
ê

ù

û

ú
ú
ú

= -
é

ë

ê
ê
ê

ù

û

ú
ú
ú

=
é

ë
ê

ù
0 5 0 0

0 2 10

0 1 2

1 0

2 2

0 1

1 0 0

0 0 1

.

ûû
ú

The target values set for the eigenvalues of the closed cycle are initialized as [− 5, − 3, − 1].
We begin by defining the controller in the M-file eigfun.m with K= [− 1, − 1, − 1, − 1] as shown in Figure 6-1.

Figure 6-1. 

Then the matrix system is introduced and the optimization routine is invoked.
 
>> A = [- 0.5 0 0; 0 - 10-2, 0-1 - 2];
B = [1 0; - 2 2; 0 1];
C = [1 0 0, 0 0 1];
K0 = [- 1 - 1; - 1 - 1]; % Initializes the array controller
goal = [- 5 - 3 - 1]; % Set target values of eigenvalues
weight = abs (goal) % puts weights

Chapter 6 ■ Optimization Techniques Via The Optimization Toolbox

88

lb = - 4 * ones (size (K0)); % Located lower on the driver dimensions
UB = 4 * ones (size (K0)); % Located in the driver dimensions
options = optimset('Display','iter');
[K,fval,attainfactor] = fgoalattain(@eigfun,K0,...
 goal,weight,[],[],[],[],lb,ub,[],options,A,B,C)
 
weight =
 
5 3 1
 
 Attainment Directional
 Iter F-count factor Step-size derivative Procedure
 1 6 1.885 1 1.03
 2 13 1.061 1 -0.679
 3 20 0.4211 1 -0.523 Hessian modified
 4 27 -0.06352 1 -0.053 Hessian modified twice
 5 34 -0.1571 1 -0.133
 6 41 -0.3489 1 -0.00768 Hessian modified
 7 48 -0.3643 1 -4.25e-005 Hessian modified
 8 55 -0.3645 1 -0.00303 Hessian modified twice
 9 62 -0.3674 1 -0.0213 Hessian modified
 10 69 -0.3806 1 0.00266
 11 76 -0.3862 1 -2.73e-005 Hessian modified twice
 12 83 -0.3863 1 -1.25e-013 Hessian modified twice
 
Optimization terminated successfully: Search direction less than 2*options.TolX and maximum
constraint violation is less than options.TolCon
 
Active Constraints:
 
 1
 2
 4
 9
 10
 
K =
 
-4.0000 -0.2564
-4.0000 -4.0000
 
fval =
 
-6.9313
-4.1588
-1.4099
 
attainfactor =
 
-0.3863 

Chapter 6 ■ Optimization Techniques Via The Optimization Toolbox

89

6.2.2 Non-Linear Scalar Minimization With Boundary Conditions
A general problem of this type can be defined as follows:

min ()
x

f x

subject to the restriction:

x x x1 2< <

where x, x
1
 and x

2
 are scalars and f (x) is a function that returns a scalar.

This problem is solved using the function fminbd, whose syntax is as follows:
 
x = fminbnd(fun,x1,x2)
x = fminbnd(fun,x1,x2,options)
x = fminbnd(fun,x1,x2,options,P1,P2,...)
[x,fval] = fminbnd(...)
[x,fval,exitflag] = fminbnd(...)
[x,fval,exitflag,output] = fminbnd(...)
 

As an example, we minimize the function sin(x) in [0,2p].
 
>> x = fminbnd(@sin,0,2*pi)
 
x =
 
4.7124 

6.2.3 Non-Linear Minimization with Restrictions
A general problem of this type can be defined as follows:

min ()
x

f x

subject to the constraints:

c x

ceq x

A x b

Aeq x beg

lb x ub

()

()

£
=

× £
× =

£ £

0

0

where x, b, beq, lb and ub are vectors, A and Aeq are matrices and c(x), ceq(x) and F(x) are functions that return
vectors. F(x), c(x) and ceq(x) can be non-linear functions.

This problem is solved using the function mincon, whose syntax is as follows:
 
x = fmincon (fun, x 0, A, b)
x = fmincon(fun,x0,A,b,Aeq,beq)
x = fmincon (fun, x 0, A, b, Aeq, beq, lb, ub)
x = fmincon (fun, x 0, A, b, Aeq, beq, lb, ub, nonlcon)
x = fmincon (fun, x 0, A, b, Aeq, beq, lb, ub, nonlcon, options)

Chapter 6 ■ Optimization Techniques Via The Optimization Toolbox

90

x = fmincon(fun,x0,A,b,Aeq,beq,lb,ub,nonlcon,options,P1,P2, ...)
[x, fval] = fmincon (...)
[x, fval, exitflag] = fmincon (...)
[x,fval,exitflag,output] = fmincon(...)
[x,fval,exitflag,output,lambda] = fmincon(...)
[x,fval,exitflag,output,lambda,grad] = fmincon(...)
[x,fval,exitflag,output,lambda,grad,hessian] = fmincon(...)
 

As an example, we minimize the function f (x) = - x
1
* x

2
* x

3
 subject to restriction 0 £ x

1
+ 2x

2
+ 2x

3
 £ 72 starting at the

point x
0
 = [10; 10; 10].

Rewriting the constraint as:

- - - £
+ + £

x x x

x x x
1 2 3

1 2 3

2 2 0

2 2 72

we can use the matrices

A b=
- - -é

ë
ê

ù

û
ú =

é

ë
ê

ù

û
ú

1 2 2

1 2 2

0

72

to consider the restriction in the form A *x £ b.
We define the objective function by means of the M-file shown in Figure 6-2.

Figure 6-2. 

Now we can solve the problem by using the syntax:
 
>> A = [-1 -2 -2; 1 2 2];
>> b = [0 72]';
>> x0 = [10; 10; 10];
>> [x,fval] = fmincon(@myfun,x0,A,b)
 
Optimization terminated successfully: Magnitude of directional derivative in search direction
less than 2*options.TolFun and maximum constraint violation is less than options.TolCon

Active Constraints:

 2
 

Chapter 6 ■ Optimization Techniques Via The Optimization Toolbox

91

x =
 
24.0000
12.0000
12.0000
 
FVal =
 
-3456 

6.2.4 Minimax Optimization: fminimax and fminuc
A general problem of this type can be defined as follows:

min max ()
x Fi

F xi
ì
í
î

ü
ý
þ

{ }

subject to the constraints:

c x

ceq x

A x b

Aeq x beg

lb x ub

()

()

£
=

× £
× =

£ £

0

0

where x, b, beq, lb and ub are vectors, A and Aeq are matrices and c(x), ceq(x) and F(x) are functions that return
vectors. F(x), c(x) and ceq(x) can be non-linear functions.

This problem is solved using the function fminimax, whose syntax is as follows:
 
x = fminimax (fun, x 0)
x = fminimax(fun,x0,A,b)
x = fminimax(fun,x0,A,b,Aeq,beq)
x = fminimax (fun, x 0, A, b, Aeq, beq, lb, ub)
x = fminimax(fun,x0,A,b,Aeq,beq,lb,ub,nonlcon)
x = fminimax(fun,x0,A,b,Aeq,beq,lb,ub,nonlcon,options)
x = fminimax(fun,x0,A,b,Aeq,beq,lb,ub,nonlcon,options,P1,P2,...)
[x, fval] = fminimax (...)
[x, fval, maxfval] = fminimax (...)
[x, fval, maxfval, exitflag] = fminimax (...)
[x, fval, maxfval, exitflag, output] = fminimax (...)
[x, fval, maxfval, exitflag, output, lambda] = fminimax (...)
 

This minimizes the functions defined on the basis of the initial value x0 subject to the constraint A * x < = b or
Aeq * x = beq or solutions x in the range lb < = x < = ub. The value maxfval is the maximum value of the function.

The function fminuc finds the minimum of a multivariate function without restrictions

min ()
x

f x

where x is a vector and f(x) is a function that returns a scalar.

Chapter 6 ■ Optimization Techniques Via The Optimization Toolbox

92

The syntax is as follows:
 
x = fminunc(fun,x0)
x = fminunc(fun,x0,options)
x = fminunc(fun,x0,options,P1,P2,...)
[x, fval] = fminunc (...)
[x, fval, exitflag] = fminunc (...)
[x,fval,exitflag,output] = fminunc(...)
[x,fval,exitflag,output,grad] = fminunc(...)
[x,fval,exitflag,output,grad,hessian] = fminunc(...) 

6.2.5 Minimax Optimization
A general problem of this type can be defined as follows:

min max ()
x Fi

F xi
ì
í
î

ü
ý
þ

{ }

subject to the constraints:

c x

ceq x

A x b

Aeq x beg

lb x ub

()

()

£
=

× £
× =

£ £

0

0

where x, b, beq, lb and ub are vectors, A and Aeq are matrices and c(x), ceq(x) and F(x) are functions that return
vectors. F(x), c(x) and ceq(x) can be non-linear functions.

This problem is solved using the function fminimax, whose syntax is as follows:
 
x = fminimax (fun, x 0)
x = fminimax(fun,x0,A,b)
x = fminimax(fun,x0,A,b,Aeq,beq)
x = fminimax(fun,x0,A,b,Aeq,beq,lb,ub)
x = fminimax(fun,x0,A,b,Aeq,beq,lb,ub,nonlcon)
x = fminimax(fun,x0,A,b,Aeq,beq,lb,ub,nonlcon,options)
x = fminimax(fun,x0,A,b,Aeq,beq,lb,ub,nonlcon,options,P1,P2,...)
[x, fval] = fminimax (...)
[x, fval, maxfval] = fminimax (...)
[x, fval, maxfval, exitflag] = fminimax (...)
[x, fval, maxfval, exitflag, output] = fminimax (...)
[x, fval, maxfval, exitflag, output, lambda] = fminimax (...)
 

This minimizes the functions defined on the basis of the initial valuex0 subject to the constraint A * x <= b or
Aeq * x = beq or solutions x in the range lb <= x <= ub. The value maxfval is the maximum value of the function.

Chapter 6 ■ Optimization Techniques Via The Optimization Toolbox

93

6.2.6 Minimum Optimization: fminsearch and fminuc
The function fminsearch finds the minimum of a multivariate function without restrictions

min ()
x

f x

where x is a vector and f  (x) is a function that returns a scalar.
The syntax is as follows:

 
x = fminsearch(fun,x0)
x = fminsearch(fun,x0,options)
x = fminsearch(fun,x0,options,P1,P2,...)
[x,fval] = fminsearch(...)
[x,fval,exitflag] = fminsearch(...)
[x,fval,exitflag,output] = fminsearch(...)
 

As an example, we minimize the function f (x) = sin(x) + 3 as follows:
 
>> x = fminsearch('sin(x)+3',2)
 
x =
 
4.7124
 

Function fminuc finds the minimum of a multivariate function without restrictions

min ()
x

f x

where x is a vector and f (x) is a function that returns a scalar.
The syntax is as follows:

 
x = fminunc(fun,x0)
x = fminunc(fun,x0,options)
x = fminunc(fun,x0,options,P1,P2,...)
[x, fval] = fminunc (...)
[x, fval, exitflag] = fminunc (...)
[x,fval,exitflag,output] = fminunc(...)
[x,fval,exitflag,output,grad] = fminunc(...)
[x,fval,exitflag,output,grad,hessian] = fminunc(...) 

6.2.7 Semi-Infinitely Constrained Minimization
A general problem of this type requires us to find the minimum of a semi-infinitely constrained multivariate function
with restrictions:

min ()
x

f x

Chapter 6 ■ Optimization Techniques Via The Optimization Toolbox

94

subject to the constraints:

c x

ceq x

A x b

Aeq x beg

lb x ub

K x w

K x w

Kn

()

()

,

,

£
=

× £
× =

£ £

() £
() £

0

0

0

0

1 1

2 2



xx wn,() £ 0

where x, b, beq, lb and ub are vectors, A and Aeq are matrices and c(x), ceq(x) and F(x) are functions that return
vectors. F(x), c(x) and ceq(x) can be non-linear functions. K

i
 and (x, w

i
) are functions that return vectors and

w
i
 are vectors of length at least 2.

This problem is solved using the function fseminf, whose syntax is as follows:
 
x = fseminf(fun,x0,ntheta,seminfcon)
x = fseminf (fun, x 0, ntheta, seminfcon, A, b)
x = fseminf(fun,x0,ntheta,seminfcon,A,b,Aeq,beq)
x = fseminf (fun, x 0, ntheta, seminfcon, A, b, Aeq, beq, lb, ub)
x = fseminf (fun, x 0, ntheta, seminfcon, A, b, Aeq, beq, lb, ub, options)
x = fseminf(fun,x0,ntheta,seminfcon,A,b,Aeq,beq,...)
 lb,ub,options,P1,P2,...)
[x,fval] = fseminf(...)
[x,fval,exitflag] = fseminf(...)
[x,fval,exitflag,output] = fseminf(...)
[x,fval,exitflag,output,lambda] = fseminf(...) 

6.2.8 Linear Programming
A general problem of this type can be defined as follows:

min
x

f xT

subject to the constraints:

A x b

Aeq x beg

lb x ub

× £
× =

£ £

where f, x, b, beq, lb and ub are vectors and A and Aeq are matrices.
This problem is solved using the function linprog, whose syntax is as follows:

 
x = linprog(f,A,b)
x = linprog(f,A,b,Aeq,beq)
x = linprog(f,A,b,Aeq,beq,lb,ub)
x = linprog(f,A,b,Aeq,beq,lb,ub,x0)
x = linprog(f,A,b,Aeq,beq,lb,ub,x0,options)

Chapter 6 ■ Optimization Techniques Via The Optimization Toolbox

95

[x,fval] = linprog(...)
[x,fval,exitflag] = linprog(...)
[x,fval,exitflag,output] = linprog(...)
[x,fval,exitflag,output,lambda] = linprog(...)
 

This minimizes f ’*x subject to the constraint A * x <= b or Aeq * x = beq or so that x is in the range lb <= x <= ub
where we use an initial value x0.

As an example, we minimize the function:

f x x x x() = - - -5 4 61 2 3

subject to the constraints:

x x x

x x x

x x

x x x

1 2 3

1 2 3

1 2

1 2 3

20

3 2 4 42

3 2 30

0 0 0

- + £
+ + £

+ £
£ £ £, ,

We use the following syntax:
 
>> f = [- 5, - 4, - 6]
A = [1 -1 -1]
 3 -2 -4
 3 2 0];
b = [20; 42; 30];
lb = zeros (3.1);
 
f =
 
-5
-4
 
>> [x,fval,exitflag,output,lambda] = linprog(f,A,b,[],[],lb)
 
Optimization terminated successfully.
 
x =
 
 0.0000
15.0000
 3.0000
 
fval =
 
-78.0000
 
exitflag =
 
1
 

Chapter 6 ■ Optimization Techniques Via The Optimization Toolbox

96

output =
 
 iterations: 6
cgiterations: 0
 algorithm: 'lipsol'
 
lambda =
 
ineqlin: [3x1 double]
 eqlin: [0x1 double]
 upper: [3x1 double]
 lower: [3x1 double]
 
>> lambda.ineqlin
 
ans =
 
0.0000
1.5000
0.5000
 
>> lambda.lower
 
ans =
 
1.0000
0.0000
0.0000 

6.2.9 Quadratic programming
A general problem of this type can be defined as follows:

min
1

2
x Hx f x

x

T
T+

subject to the constraints:

A x b

Aeq x beg

lb x ub

× £
× =

£ £

where f, x, b, beq, lb and ub are vectors and H, A and Aeq are matrices.
This problem is solved using the function quadprog, whose syntax is as follows:

 
x = quadprog(H,f,A,b)
x = quadprog(H,f,A,b,Aeq,beq)
x = quadprog(H,f,A,b,Aeq,beq,lb,ub)
x = quadprog(H,f,A,b,Aeq,beq,lb,ub,x0)
x = quadprog(H,f,A,b,Aeq,beq,lb,ub,x0,options)
x = quadprog(H,f,A,b,Aeq,beq,lb,ub,x0,options,p1,p2,...)

Chapter 6 ■ Optimization Techniques Via The Optimization Toolbox

97

[x,fval] = quadprog(...)
[x,fval,exitflag] = quadprog(...)
[x,fval,exitflag,output] = quadprog(...)
[x,fval,exitflag,output,lambda] = quadprog(...)
 

This minimizes 1/2* x'* H * x + f'* x subject to the constraint A * x <= b or Aeq * x = beq or so that x is in the range
lb <= x <= ub where we use an initial value x0.

As an example, we minimize the function:

f x x x x x x x()= + - - -
1

2
2 61

2
2
2

1 2 1 2

subject to the constraints:

x x

x x

x x

x x

1 2

1 2

1 2

1 2

2

2 2

2 3

0 0

+ £
- + £

+ £
£ £,

We begin by writing the function as:

f x x Hx f xT T() = +
1

2

where:

H f x
x

x
=

-
-
é

ë
ê

ù

û
ú =

-
-

é

ë
ê

ù

û
ú =

é

ë
ê

ù

û
ú

1 1

1 2

2

6
1

2

, ,

 
>> H = [1 -1; -1 2] ;
f = [-2; -6];
A = [1 1; -1 2; 2 1];
b = [2; 2; 3];
lb = zeros(2,1);
 
>> [x,fval,exitflag,output,lambda] = quadprog(H,f,A,b,[],[],lb);
 
Optimization terminated successfully.
 
x =
 
0.6667
1.3333
 
fval =
 
-8.2222
 
exitflag =
 
1
 

Chapter 6 ■ Optimization Techniques Via The Optimization Toolbox

98

output =
 
 iterations: 3
 algorithm: 'medium-scale: active-set'
firstorderopt: []
 cgiterations: []
 
lambda =
 
 lower: [2x1 double]
 upper: [2 x 1 double]
 eqlin: [0 x 1 double]
ineqlin: [3 x 1 double]

6.3 Equation Solving Algorithms
The Optimization Toolbox provides the following functions for the solution of equations and systems of equations.

fsolve Solves equations and non-linear systems of equations

fzero Solves non-linear scalar equations

6.3.1 Solving Equations and Systems of Equations
The function fsolve solves systems of non-linear equations F(x) = 0 where x is a vector and F(x) is a function that
returns a vector value. Its syntax is as follows:
 
x = fsolve (fun, x 0)
x = fsolve(fun,x0,options)
x = fsolve(fun,x0,options,P1,P2, ...)
[x,fval] = fsolve(...)
[x,fval,exitflag] = fsolve(...)
[x,fval,exitflag,output] = fsolve(...)
[x,fval,exitflag,output,jacobian] = fsolve(...)
 

As an example, we solve the system:

2

2
1 2

1 2

1

2

x x e

x x e

x

x

- =

- + =

-

-

with initial conditions [- 5 5].
We begin by writing the system in the form:

2 0

2 0
1 2

1 2

1

2

x x e

x x e

x

x

- - =

- + - =

-

-

We build the equations in the M-file shown in Figure 6-3.

Chapter 6 ■ Optimization Techniques Via The Optimization Toolbox

99

The system is solved by using the syntax:
 
>> x0 = [-5; -5];
>> [x,fval] = fsolve(@myfun3,x0)
 
Optimization terminated successfully: Relative function value changing by less than OPTIONS.TolFun
 
x =
 
0.5671
0.5671
 
FVal =
 
1.0E-008 *
 
-0.5319
-0.5319
 

The function fzero solves non-linear equations by using the following syntax:
 
x = fzero x 0 (fun)
x = fzero(fun,x0,options)
x = fzero(fun,x0,options,P1,P2,...)
[x, fval] = fzero (...)
[x, fval, exitflag] = fzero (...)
[x,fval,exitflag,output] = fzero(...)
 

As an example we solve the equation x3 − 2x − 5 in a neighborhood of x = 2.
 
>> z = fzero (inline('x^3-2*x-5'), 2)
 
z =
 
2.0946 

Figure 6-3. 

Chapter 6 ■ Optimization Techniques Via The Optimization Toolbox

100

6.4 Fitting Curves by Least Squares
MATLAB adjusts curves by least squares with restrictions, by non-linear least squares and non-negative linear
least-squares. The functions implemented for these tasks are as follows:

lsqlin Solves constrained linear least-squares problems

lsqcurvefit Solves non-linear curve-fitting problems in the least-squares sense

lsqnonlin Solves non-linear least-squares problems

lsqnonneg Solves non-negative least-squares constraints problem

6.4.1 Conditional Least Squares Problems
A conditional least squares problem has the following structure:

min
x

Cx d
1

2 2

2-

subject to the constraints:

A x b

Aeq x beg

lb x ub

× £
× =

£ £

where d, x, b, beq, lb and ub are vectors, and C, A and Aeq are matrices.
This problem is solved using the function lsqlin, whose syntax is as follows:

 
x = lsqlin(C,d,A,b)
x = lsqlin(C,d,A,b,Aeq,beq)
x = lsqlin(C,d,A,b,Aeq,beq,lb,ub)
x = lsqlin(C,d,A,b,Aeq,beq,lb,ub,x0)
x = lsqlin(C,d,A,b,Aeq,beq,lb,ub,x0,options)
x = lsqlin(C,d,A,b,Aeq,beq,lb,ub,x0,options,p1,p2,...)
[x,resnorm] = lsqlin(...)
[x,resnorm,residual] = lsqlin(...)
[x,resnorm,residual,exitflag] = lsqlin(...)
[x,resnorm,residual,exitflag,output] = lsqlin(...)
[x,resnorm,residual,exitflag,output,lambda] = lsqlin(...)
 

This solves C*x = d subject to the constraint A * x <= b or Aeq * x = beq or so that x is in the range lb <= x <= ub
where we use an initial value x0.

6.4.2 Non- Linear Least Squares Problems
The function lscurvefit is used to fit non-linear curves by least squares. Given a set of input data xdata and a set of
observed output data ydata, we seek the coefficients x that best fit the function F (x, xdata):

min (,) (,)
x

F x xdata ydata F x xdata ydatai i

1

2

1

22

2 2- = -()å

Chapter 6 ■ Optimization Techniques Via The Optimization Toolbox

101

The syntax is as follows:
 
x = lsqcurvefit(fun,x0,xdata,ydata)
x = lsqcurvefit(fun,x0,xdata,ydata,lb,ub)
x = lsqcurvefit(fun,x0,xdata,ydata,lb,ub,options)
x = lsqcurvefit(fun,x0,xdata,ydata,lb,ub,options,P1,P2,...)
[x,resnorm] = lsqcurvefit(...)
[x,resnorm,residual] = lsqcurvefit(...)
[x,resnorm,residual,exitflag] = lsqcurvefit(...)
[x,resnorm,residual,exitflag,output] = lsqcurvefit(...)
[x,resnorm,residual,exitflag,output,lambda] = lsqcurvefit(...)
[x,resnorm,residual,exitflag,output,lambda,jacobian] =
 lsqcurvefit (...)
 

The function lsqnonlin solves the following non-linear least squares problem:

min () () () () ()
x

f x f x f x f x f x Lm= + + + +1
2

2
2

3
2 2


by using the syntax:
 
x = lsqnonlin (fun, x 0)
x = lsqnonlin(fun,x0,lb,ub)
x = lsqnonlin(fun,x0,lb,ub,options)
x = lsqnonlin(fun,x0,eb,ub,options,P1,P2, ...)
[x,resnorm] = lsqnonlin(...)
[x,resnorm,residual] = lsqnonlin(...)
[x,resnorm,residual,exitflag] = lsqnonlin(...)
[x,resnorm,residual,exitflag,output] = lsqnonlin(...)
[x,resnorm,residual,exitflag,output,lambda] = lsqnonlin(...)
[x,resnorm,residual,exitflag,output,lambda,jacobian] =
 lsqnonlin (...) 

6.4.3 Linear Non- Negative Least Squares Problems
The function lsqnonneg solves the following non-negative least squares problem:

min .
x

Cx d

x

1

2
0

2

2-

³

where the matrix C and the vector d are the coefficients of the objective function. Its syntax is as follows:
 
x = lsqnonneg (C, d)
x = lsqnonneg (C, d, x 0)
x = lsqnonneg(C,d,x0,options)
[x,resnorm] = lsqnonneg(...)
[x,resnorm,residual] = lsqnonneg(...)
[x,resnorm,residual,exitflag] = lsqnonneg(...)
[x,resnorm,residual,exitflag,output] = lsqnonneg(...)
[x,resnorm,residual,exitflag,output,lambda] = lsqnonneg(...)
 

Chapter 6 ■ Optimization Techniques Via The Optimization Toolbox

102

The following example compares the solutions to the 4 × 2 problem defined by C and d using the normal method
and lsqnonneg.
 
>> C = [

 0.0372 0.2869
 0.6861 0.7071
 0.6233 0.6245
 0.6344 0.6170];
 
d = [

 0.8587
 0.1781
 0.0747
 0.8405];
 
[C\d, lsqnonneg (C, d)]
 
ans =
 
-2.5627 0
 3.1108 0.6929
 
>> [norm(C*(C\d)-d), norm(C*lsqnonneg(C,d)-d)]
 
ans =
 
0.6674 0.9118
 

EXERCISE 6-1

Minimize the function f(x) = (x−3)2 − 1 in the interval (0,5).
 
>> x = fminbnd(inline('(x-3)^2-1'),0,5)
 
x =
 
3 

Chapter 6 ■ Optimization Techniques Via The Optimization Toolbox

103

EXERCISE 6-2

Find the value of x that minimizes the maximum value of:

[f
1
(x), f

2
(x), f

3
(x), f

4
(x), f

5
(x)]

where the functions fi (x) are defined below.

f x x x x x

f x x x

f x x x

f

1 1
2

2
2

1 2

2 2
2

2

3 1 2

2 48 40 304

3

3 18

()

()

()

= + - - +

= - -

= + -

44 1 2

5 1 2 8

()

()

x x x

f x x x

= - -
= + -

We begin by building the M-file myfun1 which defines the functions (Figure 6-4).

Figure 6-4. 

Using as baseline [0.1 0.1] we solve the problem by using the following syntax:
 
>> x0 = [0.1; 0.1];
>> [x,fval] = fminimax(@myfun1,x0)
 
Optimization terminated successfully: Magnitude of directional derivative in search direction
less than 2*options.TolFun and maximum constraint violation is less than options.TolCon

Chapter 6 ■ Optimization Techniques Via The Optimization Toolbox

104

Active Constraints:

 1
 5
 
x =
 
4.0000
4.0000
 
FVal =
 
0.0000 - 64.0000 - 2.0000 - 8.0000 - 0.0000 

EXERCISE 6-3

Minimize the following function:

f(x) = 3 * x
1

2 + 2 * x 1 * x 2 + x
2

2

using as initial values [1,1].
 
>> [x,fval] = fminunc(inline('3*x(1)^2 + 2*x(1)*x(2) + x(2)^2'),x0)
 
Warning: Gradient must be provided for trust-region method;
 using line-search method instead.
 
> In C:\MATLAB6p1\toolbox\optim\fminunc.m at line 211
  
Optimization terminated successfully: Search direction less than 2*options.TolX
 
x =
 
 1.0E-008 *
 
-0.7591 0.2665
 
FVal =
 
1. 3953e-016 

Chapter 6 ■ Optimization Techniques Via The Optimization Toolbox

105

EXERCISE 6-4

Find the values of x that minimize the function f(x) subject to restrictions k1(x, w1) and k2 (x, w2) for w1 and w2 in
[1, 100]. The function and the constraints are defined in the problem and the starting point is (0.5 0.2 0.3).

f x x x x

K x w w x w

() (.) (.) (.)

(,) sin()cos(

= - + - + -

=

1
2

2
2

3
2

1 1 1 1

0 58 0 5 0 5

11 2 1
2

1 3 3

2 2 2 2 2

1

1000
50 1x w w x x

K x w w x w

) () sin()

(,) sin()cos(

- - - - £

= xx w w x x1 2
2

2 3 3

1

1000
50 1) () sin()- - - - £

We start by creating an M-file with restrictions (Figure 6-5).

Figure 6-5. 

We also create a target file for the function (Figure 6-6).

Chapter 6 ■ Optimization Techniques Via The Optimization Toolbox

106

We solve the problem and obtain the graphical solution (Figure 6-7) using the following syntax:
 
>> [x,fval] = fseminf(@myfun2,x0,2,@mycon)
 
Optimization terminated successfully: Search direction less than 2*options.TolX and maximum
constraint violation is less than options.TolCon

Check Constraints:

 7
 10
 
x =
 
0.6673
0.3013
0.4023
 
FVal =
 
0.0770 

Figure 6-6. 

Chapter 6 ■ Optimization Techniques Via The Optimization Toolbox

107

EXERCISE 6-5

Given the data sets:
 
xdata = [3.6 7.7 9.3 4.1 8.6 2.8 1.3 7.9 10.0 5.4];
ydata = [16.5 150.6 263.1 24.7 208.5 9.9 2.7 163.9 325,0 54.3];
 
find the x coefficients that minimize the function ydata (i) defined in the problem below.

ydata i x xdata i x xdata i x xdata i() () () () sin(()) () ()= × + × + ×1 2 32 3

Our problem can be written as:

min (,)
x

F x xdata ydatai i
i

n1

2
2

1

-()
=
å

Figure 6-7. 

Chapter 6 ■ Optimization Techniques Via The Optimization Toolbox

108

We start by defining the function F in the M-file shown in Figure 6-8:

Figure 6-8. 

The problem, with initial values in [10,10,10], is solved by using the following syntax:
 
>> xdata = [3.6 7.7 9.3 4.1 8.6 2.8 1.3 7.9 10.0 5.4];
ydata = [16.5 150.6 263.1 24.7 208.5 9.9 2.7 163.9 325,0 54.3];
>> x 0 = [10, 10, 10];
>> [x, resnorm] = lsqcurvefit(@myfun4,x0,xdata,ydata)
 
Optimization terminated successfully: Relative function value changing by less than
OPTIONS.TolFun
 
x =
 
0.2269 0.3385 0.3021
 
resnorm =
 
6.2950 

109

Chapter 7

Differentiation in one and Several
Variables. Applications to Optimization

7.1 Derivatives
The derivative of a real function at a point is the instantaneous rate of change of that function in a neighborhood of the
point; i.e., it is a measure of how the dependent variable changes as a result of a small change in the independent variable.

Geometrically, the derivative of a function at a point represents the gradient of the tangent to the function at the
point. The origin of the idea of the derivative comes precisely from the attempt to draw the tangent line at a given
point on a curve.

A function f (x) defined in a neighborhood of a point x = a is differentiable at a if the following limit exists:

lim
()

h

f a h f a

h®

+() -
0

The value of the limit, if it exists, is denoted by f '(a), and is called the derivative of the function f at the point a. If
f is differentiable at every point of its domain, it is simply said to be differentiable.

The continuity of a function is a necessary condition for its differentiablity, and all differentiable functions are
continuous.

The following table shows the basic commands that enables MATLAB to work with derivatives.

diff('f', 'x') Differentiates the function f with respect to x

>> diff('sin(x^2)','x')

ans =

2 * x * cos(x^2)

syms x, diff(f,x) Differentiates the function f with respect to x

>> syms x
>> diff(sin(x^2),x)

ans =

2 * x * cos(x^2)

(continued)

Chapter 7 ■ Differentiation in one and Several Variables. Applications to Optimization

110

diff('f', 'x', n) Finds the nth derivative of the function f with respect to x

>> diff('sin(x^2)','x',2)

ans =

2 * cos(x^2) - 4 * x ^ 2 * sin(x^2)

syms x, diff(f, x, n) Finds the nth derivativeof the function f with respect to x

>> syms x
>> diff(sin(x^2),x,2)

ans =

2 * cos(x^2) - 4 * x ^ 2 * sin(x^2)

R = jacobian(w,v) Returns the Jacobian matrix of w with respect to v

>> syms x y z
>> jacobian([x*y*z; y; x+z],[x y z])

ans =

[y * z, x * z, x * y]
[0, 1, 0]
[1, 0, 1]

Y = diff(X) Calculates the successive differences between elements of the vector X: [X(2) - X (1),
X(3) - X (2),…, X(n) - X (n-1)]. If X is an m×n matrix, then diff (X) returns the array of
differences by rows: [X(2:m,:)-X(1:m-1,:)]

x = [1 2 3 4 5];
y = diff (x)
y =
1 1 1 1

Y = diff(X,n) Find differences of order n, for example: diff(X,2) = diff (diff (X))

x = [1 2 3 4 5];
z = diff(x,2)
z =
0 0 0

As a first example, we consider the function f (x) = x5- 3x4-11x3+ 27x2+ 10x- 24 and graph it in the interval [-4,5].
 
>> x=-4:0.1:5;
>> f=x.^5-3*x.^4-11*x.^3+27*x.^2+10*x-24;
>> df=diff(f)./diff(x);
>> plot(x,f)
 

Chapter 7 ■ Differentiation in one and Several Variables. Applications to Optimization

111

As a second example, we calculate the derivative of the function log(sin(2x)), simplifying the result.
  
>> pretty(simplify(diff('log(sin(2*x))','x')))
  
 2 cot(2 x)
 

As a third example, we calculate the first four derivatives of f (x) = 1 /x2

 
>> f = '1/x^2'
 
f =
1/x^2
 
>> [diff(f),diff(f,2),diff(f,3),diff(f,4)]
  
ans =
  
[-2/x ^ 3, 6/x ^ 4, - 24/x ^ 5, 120/x ^ 6] 

7.2 Par tial Derivatives
The MATLAB commands for differentiation described above can also be used for partial differentiation.

As an example, given the function f (x, y) = sin(xy) + cos(xy2), we calculate the following:

¶
¶

¶
¶

¶
¶

¶
¶

¶
¶ ¶

¶
¶ ¶ ×× ××¶

¶ ¶
f

x
f

y
f

x
f

y
f

x y
f

y x
f

x y
, , , , ,

2

2

2

2

2 2 4

2 2and

 

Chapter 7 ■ Differentiation in one and Several Variables. Applications to Optimization

112

>> syms x y
>> f = sin(x*y) + cos(x*y^2)
  
f =
  
sin(x*y) + cos(x*y^2)
  
>> diff(f,x)
  
ans =
  
cos(x*y)*y-sin(x*y^2)*y^2
  
>> diff(f,y)
  
ans =
  
cos(x*y)*x-2*sin(x*y^2)*x*y
  
>> diff(diff(f,x),x)
  
ans =
  
-sin(x*y)*y^2-cos(x*y^2)*y^4
  
>> diff (diff(f,y), y)
  
ans =
  
-sin(x*y)*x^2-4*cos(x*y^2)*x^2*y^2-2*sin(x*y^2)*x
  
>> diff(diff(f,x),y)
  
ans =
  
-sin(x*y)*x*y + cos(x*y)-2*cos(x*y^2)*x*y^3-2*sin(x*y^2)*y
  
>> diff(diff(f,y),x)
  
ans =
  
-sin(x*y)*x*y+cos(x*y)-2*cos(x*y^2)*x*y^3-2*sin(x*y^2)*y
  
>> diff(diff(diff(diff(f,x),x),y,y))

ans =
  
sin(x*y)*y^3*x-3*cos(x*y)*y^2+2*cos(x*y^2)*y^7*x+6*sin(x*y^2)*y ^ 5
 

Chapter 7 ■ Differentiation in one and Several Variables. Applications to Optimization

113

7.3 Applications of Derivatives. Tangents, Asymptotes, Extreme
Points and Turning Points
By calculating the derivative of a function we can find the tangent to a function at a point, find the asymptotes
(horizontal, vertical or oblique) of a function, study the growth and concavity of functions and determine maxima,
minima and turning points of functions on intervals.

With this information it is possible to give a fairly complete study of curves.
If f is a function for which f'(x

0
) exists, then f'(x

0
) is the slope of the tangent line to the function f at the point

(x
0
, f (x

0
)). The equation of the tangent will be y-f(x

0
) = f'(x

0
) (x-x

0
).

The horizontal asymptotes of the curve y = f (x) are limit tangents, as x
0
 ® ∞, which are horizontal. They are

defined by the equation y f x
x
lim ().=
®¥0

0

The vertical asymptotes of the curve y = f (x) are limit tangents, as f (x
0
) ® ∞, which are vertical. They are defined

by the equation x = x
0
, where x

0
 is a value such that lim

x x
f x

®
() = ¥

0

.

The oblique asymptotes to the curve y = f (x) at the point x = x
0
 have the equation y = mx+n, where

m
y

xx
=

®¥
lim and n y mx

x
= -

®¥
lim() .

If f is a function for which f '(x
0
) and f ''(x

0
) both exist, then, if f '(x

0
) = 0 and f ''(x

0
) < 0, the function f has a local

maximum at the point (x
0
, f (x

0
)).

If f is a function for which f '(x
0
) and f  ''(x

0
) both exist, then, if f '(x

0
) = 0 and f ''(x0) > 0, the function f has a local

minimum at the point (x0, f (x0)).
If f is a function for which f '(x

0
), f ''(x

0
) and f '''(x

0
) exist, then, if f '(x

0
) = 0 and f ''(x

0
) = 0 and f '''(x

0
) ≠ 0, the function

f has a turning point at the point (x
0
, f (x

0
)).

If f is differentiable, then the values of x for which the function f is increasing are those for which f '(x) is greater
than zero.

If f is differentiable, then the values of x for which the function f is decreasing are those for which f '(x) is less than
zero.

If f is twice differentiable, then the values of x for which the function f is concave are those for which f ''(x) is
greater than zero.

If f is twice differentiable, then the values of x for which the function f is convex are those for which f ''(x) is less
than zero.

As an example, we conduct a full study of the function:

f x
x

x
() =

-

3

2 1

calculating the asymptotes, maxima, minima, inflection points, intervals of growth and decrease and intervals of
concavity and convexity.
 
>> f='x^3/(x^2-1)'
 
f =
 
x^3/(x^2-1)
 
>> syms x, limit(x^3/(x^2-1),x,inf)
 
ans =
  
NaN
 

Chapter 7 ■ Differentiation in one and Several Variables. Applications to Optimization

114

Therefore, there are no horizontal asymptotes. To see if there are vertical asymptotes, let’s look at the values of x
that make y infinite:
 
>> solve('x^2-1')
 
ans =
 
[1]
[-1]
 

The vertical asymptotes will be the straight lines x = 1 and x =–1. Now let’s see if there are any oblique asymptotes:
 
>> limit(x^3/(x^2-1)/x,x,inf)
 
ans =
 
1
 
>> limit(x^3/(x^2-1)-x,x,inf)
 
ans =
 
0
 

The straight line y = x is an oblique asymptote. Now, we will analyze the maximum and minimum, inflection
points and intervals of concavity and growth:
 
>> solve (diff (f))
 
ans =
 
[0]
[0]
[3 ^(1/2)]
[^(1/2) - 3]
 

The first derivative vanishes at x = 0, x =√3 and x = –√3. These include maximum and minimum candidates.
To verify if they are minima or maxima, we find the value of the second derivative at those points:
 
>> [numeric(subs(diff(f,2),0)),numeric(subs(diff(f,2),sqrt(3))),
 numeric(subs(diff(f,2),-sqrt(3)))]
 
ans =
 
0 2.5981 -2.5981
 

Chapter 7 ■ Differentiation in one and Several Variables. Applications to Optimization

115

Therefore, at the point with abscissa x = –√3 there is a maximum and at the point with abscissa x = √3 there is a
minimum. At x = 0 we know nothing:
 
>> [numeric (subs (f, sqrt (3))), numeric (subs (f, - sqrt (3)))]
 
ans =
 
2.5981 -2.5981
 

Therefore, the maximum point is (–√3,–2.5981) and the minimum point is (√3, 2.5981).
We will now analyze the points of inflection:

 
>> solve(diff(f,2))
 
ans =
 
[0]
[i*3^(1/2)]
[-i * 3 ^(1/2)]
 

The only possible turning point occurs at x = 0, and as f(0) = 0, this point is (0,0):
 
>> subs (diff(f,3), 0)
 
ans =
 
-6
 

As the third derivative at x = 0 is not zero, the origin is a turning point:
 
>> pretty(simple(diff(f)))
 2 2
 x (x - 3)

 2 2
 (x - 1)
 

The curve is increasing when y' > 0, i.e., in the intervals (–∞,–√3) and (√3,∞).
The curve is decreasing when y ' < 0, i.e., in the intervals (–√3,–1), (–1,0), (0,1) and (1, √3).

 
>> pretty(simple(diff(f,2)))
 
 2
 x (x + 3)
 2 ------------
 2 3
 (x - 1)
 

The curve will be concave when y"> 0, i.e., in the intervals (–1,0) and (1, ∞).
The curve is convex when y"> 0, i.e. in the intervals (0,1) and (- ∞ , - 1).
The curve has a horizontal tangent at the three points at which the first derivative is zero. The equations of the

horizontal tangents are y = 0, y = 2.5981, and y = -2.5981.

Chapter 7 ■ Differentiation in one and Several Variables. Applications to Optimization

116

The curve has a vertical tangent at the points where the first derivative is infinite. These include x = 1 and x = –1.
Therefore the vertical tangents coincide with two vertical asymptotes.

Next we represent the curve along with its asymptotes:
 
>> fplot('[x^3/(x^2-1),x]',[-5,5,-5,5])
 

We can also represent the curve, its asymptotes and the horizontal and vertical tangents in the same graph.
 
>> fplot('[x^3/(x^2-1),x,2.5981,-2.5981]',[-5,5,-5,5])
 

Chapter 7 ■ Differentiation in one and Several Variables. Applications to Optimization

117

7.4 Differentiation of Functions of Several Variables
The notion of the derivative of a function generalizes to functions of several variables. Below we discuss the concept in
the two variable case.

Given a function f: R2® R, the partial derivative of f with respect to the variable x at the point (a, b) is defined
as follows:

¶
¶

f

x
a b

f a h b f a b

hh
(,) lim

(,) (,)
=

+ -
®0

Similarly, the partial derivative of f with respect to the variable y at the point (a, b) is defined as:

¶
¶

f

y
a b

f a b h f a b

hh
(,) lim

(,) (,)
=

+ -
®0

Generally speaking, we can define the partial derivative with respect to any variable for a function of n variables.
Given the function f: Rn® R, the partial derivative of f with respect to the variable x

i
 (i = 1, 2,…, n) at the point

(a
1
,a

2
,…,a

n
) is defined as follows:

¶
¶

f

x
a a a

f a a a h a f a a

i
n

h

i n(, ,...,) lim
(, ,..., ,...,) (,

1 2
0

1 2 1 2=
+ -

®

,,...,)a

h
n

The function f is differentiable if all partial derivatives with respect to x
i
 (i = 1, 2,…, n) exist and are continuous.

All differentiable functions are continuous, and if a function is not continuous, it cannot be differentiable.
The directional derivative of the function f with respect to the vector v=(v

1
,v

2
,…,v

n
) is defined as the following

scalar product:

() , ,..., , ,...,Df v
f

x

f

x

f

x
v v v f v

n
n=

æ

è
ç

ö

ø
÷ ()= Ñ()¶

¶
¶
¶

¶
¶1 2

1 2· ·

Ñ =
æ

è
ç

ö

ø
÷f

f

x

f

x

f

xn

¶
¶

¶
¶

¶
¶1 2

, ,..., is called the gradient vector of f.

The directional derivative of the function f with respect to the vector v =(dx
1
,dx

2
,…,dx

n
) is called the total

differential of f. Its value is:

Df
f

x
dx

f

x
dx

f

x
dx

n
n= + + +

æ

è
ç

ö

ø
÷

¶
¶

¶
¶

¶
¶1

1
2

2 ...

Chapter 7 ■ Differentiation in one and Several Variables. Applications to Optimization

118

Derivatives of functions of several variables can be found by MATLAB using the following commands.

diff(f(x,y,z,…),x) Returns the partial derivative of f with respect to x

>> syms x and z
>> diff(x^2+y^2+z^2+x*y-x*z-y*z+1,z)

ans =

2*z - y - x

diff (f(x,y,z,…), x, n) Returns the nth partial derivative of f with respect to x

>> diff(x^2+y^2+z^2+x*y-x*z-y*z+1,z,2)

ans =

2

diff(f(x1,x2,x3,…),xj) Returns the partial derivative of f with respect to xj

>> diff(x^2+y^2+z^2+x*y-x*z-y*z+1,y)

ans =

x + 2*y - z

diff(f(x1,x2,x3,…),xj,n) Returns the nth partial derivative of f with respect to xj

>> diff(x^2+y^2+z^2+x*y-x*z-y*z+1,y,2)

ans =

2

diff(diff(f(x,y,z,…),x),y)) Returns the second partial derivative of f with respect to x and y

>> diff (diff(x^2+y^2+z^2+x*y-x*z-y*z+1,x), y)

ans =

1

As a first example, we study the differentiability and continuity of the function:

f x y
xy

x y
x y f, (,) (,) ,() =

+
¹ () =2

0 0 0 0 0
2 2

if and

Chapter 7 ■ Differentiation in one and Several Variables. Applications to Optimization

119

To determine if the function is differentiable, we need to show that it has continuous partial derivatives at every
point. We consider any point other than the origin and calculate the partial derivative with respect to the variable x:
 
>> syms x y
>> pretty (simplify (diff ((2*x*y) /(x^2+y^2) ^(1/2), x)))
  
 3
 2 y

 3
 -
 2
 2 2
 (x + y)
 
 

Now, let’s see if this partial derivative is continuous at the origin. When calculating the iterated limits at the
origin, we observe that they do not coincide.
 
>> limit (limit (2 * y ^ 3 /(x^2+y^2) ^(3/2), x, 0), y, 0)
  
ans =
  
NaN
  
>> limit (limit (2 * y ^ 3 /(x^2+y^2) ^(3/2), y, 0), x, 0)
  
ans =
  
0
 

The limit of the partial derivative does not exist at (0,0), and so we conclude that the function is not differentiable
at the origin.

However, the function is continuous, since the only problematic point is the origin, and the limit of the function
tends to 0 = f (0,0):
 
>> limit (limit ((2*x*y) /(x^2+y^2) ^(1/2), x, 0), y, 0)
  
ans =
  
0
  
>> limit (limit ((2*x*y) /(x^2+y^2) ^(1/2), y, 0), x, 0)
  
ans =
  
0

Chapter 7 ■ Differentiation in one and Several Variables. Applications to Optimization

120

>> m = sym('m', 'positive')
>> limit((2*x*(m*x))/(x^2+(m*x)^2)^(1/2),x,0)
  
ans =
  
0
 
>> a = sym('a', 'real');
>> f =(2*x*y) /(x^2+y^2) ^(1/2);
>> limit (subs (f, {x, y}, {r * cos (a), r * sin (a)}), r, 0)
  
ans =
  
0
 

The iterated limits and the directional limits are all zero, and by changing the function to polar coordinates, the
limit at the origin turns out to be zero, which coincides with the value of the function at the origin.

This is therefore an example of a non-differentiable continuous function.
The following graph helps to interpret the result.

As a second example we consider the function:

f x y z
x y z

(, ,) =
+ +

1
2 2 2

Chapter 7 ■ Differentiation in one and Several Variables. Applications to Optimization

121

We check the equation:	

¶
¶

+
¶
¶

+
¶
¶

=
2

2

2

2

2

2
0

f

x

f

y

f

z

 
>> syms x y z
>> f = 1 /(x^2+y^2+z^2) ^(1/2)
  
f =
  
1/(x^2 + y^2 + z^2)^(1/2)
  
>> diff(f,x,2)+diff(f,y,2)+diff(f,z,2)
  
ans =
  
(3 * x ^ 2) /(x^2 + y^2 + z^2) ^(5/2) - 3 /(x^2 + y^2 + z^2) ^(3/2) + (3 * y ^ 2)
/(x^2 + y^2 + z^2) ^(5/2) + (3 * z ^ 2) /(x^2 + y^2 + z^2) ^(5/2)
  
>> simplify(diff(f,x,2)+diff(f,y,2)+diff(f,z,2))
  
ans =
  
0
 

As a third example, we calculate the directional derivative of the function:

f x y z
x y z

(, ,) =
+ +

1
2 2 2

at the point (2,1,1) in the direction of the vector v = (1,1,0). We also find the gradient vector of f.
Recall that the directional derivative of the function f with respect to the vector v = (v

1
,v

2
,…,v

n
) is defined as the

following scalar product:

() , ,..., , ,...,Df v
f

x

f

x

f

x
v v v f v

n
n=

æ

è
ç

ö

ø
÷ ()= Ñ()¶

¶
¶
¶

¶
¶1 2

1 2· ·

Ñ =
æ

è
ç

ö

ø
÷f

f

x

f

x

f

xn

¶
¶

¶
¶

¶
¶1 2

, ,..., is called the gradient vector of f.

First we calculate the gradient of the function f.
 
>> syms x y z
>> f = 1 /(x^2+y^2+z^2) ^(1/2)
  
f =
  
1 /(x^2 + y^2 + z^2) ^(1/2)
  

Chapter 7 ■ Differentiation in one and Several Variables. Applications to Optimization

122

>> Gradient_f = simplify ([diff(f,x), diff(f,y), diff (f, z)])
  
Gradient_f =
  
[-x /(x^2 + y^2 + z^2) ^(3/2),- y /(x^2 + y^2 + z^2) ^(3/2),-z /(x^2 + y^2 + z^2) ^(3/2)]
 

We then calculate the gradient vector at the point (2,1,1).
 
>> Gradient_f_p = subs(Gradient_f,{x,y,z},{2,1,1})
 
Gradient_f_p =
 
 -0.1361 - 0.0680 - 0.0680
 

Finally, we calculate the directional derivative.
 
>> Directional_derivative_p = dot (Gradient_f_p, [1,1,0])
 
Directional_derivative_p =
 
 -0.2041 

7.5 Maxima and Minima of Functions of Several Variables
MATLAB allows you to easily calculate maxima and minima of functions of several variables.

A function f: Rn®R, which maps the point (x
1
, x

2
,…, x

n
)ÎR to f(x

1
,x

2
,…,x

n
)ÎR, has an extreme point at (a

1
,a

2
,…,a

n
) if

the gradient vector Ñ =
æ

è
ç

ö

ø
÷f

f

x

f

x

f

xn

¶
¶

¶
¶

¶
¶1 2

, ,..., is zero at (a
1
,a

2
,…,a

n
).

By setting all the first order partial derivatives equal to zero and solving the resulting system, we can find the
possible maxima and minima.

To determine the nature of the extreme point, it is necessary to construct the Hessian matrix, which is defined as
follows:

H

f

x

f

x x

f

x x

f

x x

f

x

n

=

¶
¶

¶
¶ ¶

¶
¶ ¶

¶
¶ ¶

¶
¶

2

1
2

2

1 2

2

1

2

1 2

2

2
2

........

.........

........

¶
¶ ¶

¶
¶ ¶

¶
¶

2

2

2

1

2

2

f

x x

f

x x

f

x

n

n ¶¶
¶
¶x

f

xn n

........
2

2

é

ë

ê
ê
ê
ê
ê
ê
ê
ê
ê

ù

û

ú
ú
ú
ú
ú
ú
ú
ú
ú

First, suppose that the determinant of H is non-zero at the point (a
1
,a

2
,…,a

n
). In this case, we say that the point is

non-degenerate and, in addition, we can determine the nature of the extreme point via the following conditions:
If the Hessian matrix at the point (a

1
,a

2
,…,a

n
) is positive definite, then the function has a minimum at that point.

If the Hessian matrix at the point (a
1
,a

2
,…,a

n
) is negative definite, then the function has a maximum at that point.

In any other case, the function has a saddle point at (a
1
,a

2
,…,a

n
).

If the determinant of H is zero at the point (a
1
,a

2
,…,a

n
), we say that the point is degenerate.

As an example we find and classify the extreme points of the function:

f x y z x xy y z(, ,) = + + +2 2 2

Chapter 7 ■ Differentiation in one and Several Variables. Applications to Optimization

123

We start by finding the possible extreme points. To do so, we equate all of the partial derivatives of f with respect
to each of its variables (i.e. the components of the gradient vector of f) to zero and solve the resulting system in
three variables:
 
>> syms x y z
>> f = x ^ 2 + y ^ 2 + z ^ 2 + x * y
  
f =
  
x ^ 2 + x * y + y ^ 2 + z ^ 2
 
>> [x y z] = solve (diff(f,x), diff(f,y), diff (f, z), x, y , z)
  
x =
  
0
  
y =
  
0
 
z =
  
0
 

The single extreme point is the origin (0,0,0). We will analyze what kind of extreme it is. To do this, we calculate
the Hessian matrix and express it as a function of x, y and z:
 
>> clear all
>> syms x y z
>> f = x ^ 2 + y ^ 2 + z ^ 2 + x * y
  
f =
  
x ^ 2 + x * y + y ^ 2 + z ^ 2
  
>> diff(f,x)
  
ans =
  
2*x + y
  
>> H=simplify([�diff(f,x,2),diff(diff(f,x),y),diff(diff(f,x),z);

diff(diff(f,y),x),diff(f,y,2),diff(diff(f,y),z);
diff(diff(f,z),x),diff(diff(f,z),y),diff(f,z,2)])

  
H =
  
[2, 1, 0]
[1, 2, 0]
[0, 0, 2]
 

Chapter 7 ■ Differentiation in one and Several Variables. Applications to Optimization

124

>> det(H)
  
ans =
  
6
 

We have seen that the Hessian matrix is constant (i.e. it does not depend on the point at which applies), therefore
its value at the origin has already been found. The determinant is non-zero, so there are no degenerate extrema.
 
>> eig(H)
  
ans =
  
 1
 2
 3
 

We see that the Hessian matrix at the origin is positive definite, because all its eigenvalues are positive. Thus, we
conclude that the origin is a minimum of the function.

In addition, MATLAB incorporates specific commands for optimizing and finding zeros of functions of several
variables. The most important of these are shown in the following table.

g = inline(expr) Constructs an inline function from the string expr

>> g = inline('t^2')

g =

Inline function:
g(t) = t^2

g = inline(expr,arg1,arg2, …) Constructs an inline function from the string expr with the given input
arguments

>> g = inline('sin(2*pi*f + theta)', 'f', 'theta')

g =

Inline function:
g(f,theta) = sin(2*pi*f + theta)

g = inline(expr,n) Constructs an inline function from the string expr with n input arguments

>> g = inline('x^P1', 1)

g =

Inline function:
g(x,P1) = x^P1

(continued)

Chapter 7 ■ Differentiation in one and Several Variables. Applications to Optimization

125

f = @function Enables the function to be evaluated

>> f=@cos

f =

@cos

>> ezplot(f, [-pi,pi])

x = fminbnd(fun,x1,x2) Minimizes the function on the interval (x1, x2)

>> x=fminbnd(@cos,3,4)

x =

3.1416

x = fminbnd(fun,x1,x2,options) Minimizes the function on the interval (x1, x2) according to the option given by
optimset (…). This last command is explained later.

>> x = fminbnd (@cos, 3, 4, optimset ('TolX', 1e-12,
'Display', 'off'))

x =

3.1416

x = fminbnd(fun,x1,x2,
options,P1,P2,…)

Specifies additional parameters P1, P2, to pass to the target function
fun(x,P1,P2,…)

[x, fval] = fminbnd (…) Evaluates the objective function at x

>> [x,fval] = fminbnd(@cos,3,4)

x =

3.1416

fval =

-1.0000

(continued)

Chapter 7 ■ Differentiation in one and Several Variables. Applications to Optimization

126

[x, fval, f] = fminbnd (…) In addition, returns an indicator of convergence f ( f > 0 indicates convergence
to the solution, f < 0 no convergence and f = 0 exceeded number of steps)

>> [x,fval,f] = fminbnd(@cos,3,4)

x =

3.1416

fval =

-1.0000

f =

1

[x,fval,f,output] = fminbnd(…) Gives further information on optimization (output.algorithm gives the
algorithm used, output.funcCount gives the number of evaluations of fun and
output.iterations gives the number of iterations)

>> [x,fval,f,output] = fminbnd(@cos,3,4)

x =

3.1416

fval =

-1.0000

f =

1

output =

iterations: 7
funcCount: 8
algorithm: 'golden section search, parabolic interpolation'
message: [1x112 char]

(continued)

Chapter 7 ■ Differentiation in one and Several Variables. Applications to Optimization

127

x = fminsearch(fun,x0)
x = fminsearch(fun,x0,options)
x = fminsearch(fun,x0,options,P1
,P2,…)
[x,fval] = fminsearch(…)
[x,fval,f] = fminsearch(…)
[x,fval,f,output] = fminsearch(…)

Identical to the previous command to minimize function of several variables
with initial values given by x0. Here x0 can be an interval [a, b] in which a
solution is sought. Thus, to minimize fun in [a, b] we use x = fminsearch
( fun, [a, b]).

>> x = fminsearch(inline('(100*(1-x^2)^2+(1-x)^2)'),3)

x =

1.0000
>> [x,feval] = fminsearch(inline('(100*(1-x^2)^2 +(1-x)^2)'),3)

x =

1.0000

feval =

2.3901e-007

>> [x,feval,f] = fminsearch(inline('(100*(1-x^2)^2 +(1-x)^2)'),3)

x =

1.0000

feval =

2.3901e-007

f =

1

>> [x,feval,f,output] = fminsearch(inline('(100*(1-x^2)^2+(1-x)^2)'),3)

x =

1.0000

feval =

2.3901e-007

f =

1

output =

iterations: 18
funcCount: 36
algorithm: 'Nelder-Mead simplex direct search'
message: [1x196 char]

(continued)

Chapter 7 ■ Differentiation in one and Several Variables. Applications to Optimization

128

x = fzero x0 (fun)
x = fzero(fun,x0,options)
x = fzero(fun,x0,options,P1,P2,…)
[x, fval] = fzero (…)
[x, fval, exitflag] = fzero (…)
[x,fval,exitflag,output] = fzero(…)

Identical to the previous command to find zeros of functions. Here x0 can be an
interval [a, b] in which a solution is sought. Then, to find a zero of fun in [a, b]
we use x = fzero ( fun, [a, b]), where fun has opposite signs at a and b.

>> x = fzero(@cos,[1 2])

x =

1.5708

>> [x, fval] = fzero(@cos,[1 2])

x =

1.5708

fval =

6. 1232e-017

>> [x, fval, exitflag] = fzero(@cos,[1 2])

x =

1.5708

fval =

6. 1232e-017

exitflag =

1

>> [x, fval, exitflag, output] = fzero(@cos,[1 2])

x =

1.5708

fval =

6. 1232e-017

exitflag =

1

output =

intervaliterations: 0
iterations: 5
funcCount: 7
algorithm:'bisection, interpolation'
message: 'Zero found in the interval [1, 2]'

(continued)

Chapter 7 ■ Differentiation in one and Several Variables. Applications to Optimization

129

options =
optimset('p1',v1,'p2',v2,…)

Creates optimization options parameters p1, p2,… with values v1, v2… The
possible parameters are Display (with possible values 'off', 'iter', 'final', 'notify'
to hide the output, display the output of each iteration, display only the final
output and show a message if there is no convergence); MaxFunEvals, whose
value is an integer indicating the maximum number of evaluations; MaxIter
whose value is an integer indicating the maximum number of iterations;
TolFun, whose value is an integer indicating the tolerance in the value of the
function, and TolX, whose value is an integer indicating the tolerance in the
value of x

val = optimget (options, 'param') Returns the value of the parameter specified in the optimization options
structure

As a first example we minimize the function cos(x) in the interval (3,4).
 
>> x = fminbnd(inline('cos(x)'),3,4)
 
x =
 
3.1416
 

In the following example we conduct the same minimization with a tolerance of 8 decimal places and find both
the value of x that minimizes the cosine in the range given and the minimum value of the cosine function in that
interval, presenting information relating to all iterations of the process.
 
>> [x, fval, f] = fminbnd (@cos, 3, 4, optimset('TolX',1e-8,...)) (('Display', 'iter'));
 
 Func-count x f(x) Procedure
 1 3.38197 -0.971249 initial
 2 3.61803 -0.888633 golden
 3 3.23607 -0.995541 golden
 4 3.13571 -0.999983 parabolic
 5 3.1413 -1 parabolic
 6 3.14159 -1 parabolic
 7 3.14159 -1 parabolic
 8 3.14159 -1 parabolic
 9 3.14159 -1 parabolic
 
Optimization terminated successfully:
the current x satisfies the termination criteria using OPTIONS.TolX of 1.000000e-008
 

In the following example, taking as initial values (- 1.2, 1), we minimize and find the target value of the function of
two variables:

f x x x x() () ()= - + -100 12 1
2 2

1
2

 

Chapter 7 ■ Differentiation in one and Several Variables. Applications to Optimization

130

>> [x,fval] = fminsearch(inline('100*(x(2)-x(1)^2)^2+...
 1-x (1)) ^ 2'), [- 1.2, 1])
 
x =
 
1.0000 1.0000
 
FVal =
 
8. 1777e-010
 

The following example computes a zero of the sine function near 3 and a zero of the cosine function
between 1 and 2.
 
>> x = fzero(@sin,3)
 
x =
 
3.1416
 
>> x = fzero(@cos,[1 2])
 
x =
 
1.5708  

7.6 Conditional Minima and Maxima. The Method of
“Lagrange Multipliers”
Suppose we want to optimize (i.e. maximize or minimize) the function f(x

1
,x

2
,…,x

n
) , called the objective function, but

subject to certain restrictions given by the equations:
 
g
1
(x

1
,x

2
,…,x

n
)=0

g
2
(x

1
,x

2
,…,x

n
)=0

...............
g
k
(x

1
,x

2
,…,x

n
)=0

 
This is the setting in which the Lagrangian is introduced. The Lagrangian is a linear combination of the objective

function and the constraints, and has the following form:

L X X X f X X X g x x xn n i i n
i

k

(, , ,) (, ,) (, ,...,)1 2 1 2 1 2
1

 l l= +
=
å

The extreme points are found by solving the system by setting the components of the gradient vector of L to zero,
that is, ÑL(x

1
,x

2
,…,x

n
,l) =(0,0,…,0). Which translates into:

Ñ =
æ

è
ç

ö

ø
÷=L

L

x

L

x

L

x

L L L

n n

¶
¶

¶
¶

¶
¶

¶
¶ l

¶
¶ l

¶
¶ l1 2 1 2

0 0, ,..., , , ,..., , ,......,0()

Chapter 7 ■ Differentiation in one and Several Variables. Applications to Optimization

131

By setting the partial derivatives to zero and solving the resulting system, we obtain the values of x
1
, x

2
,…, x

n
, l

1
,

l
2
,…,l

k
 corresponding to possible maxima and minima.

To determine the nature of the points (x
1
, x

2
,…, x

n
) found above, the following bordered Hessian matrix is used:

¶
¶

¶
¶ ¶

¶
¶ ¶

¶
¶

¶
¶ ¶

¶
¶

2

1
2

2

1 2

2

1 1

2

1 2

2

2
2

f

x

f

x x

f

x x

g

x

f

x x

f

x

n

i.......

........

.......

¶
¶ ¶

¶
¶

¶
¶

2

2 2

2

f

x x

g

x

f

n

i

xx x

f

x x

f

x

g

x

g

x

g

x

g
n n n

i

n

i i i

1

2

2

2

2

1 2

¶
¶

¶ ¶
¶
¶

¶
¶

¶
¶

¶
¶

¶
¶

.......

.......
xxn

0

é

ë

ê
ê
ê
ê
ê
ê
ê
ê
ê
ê
ê
ê
ê

ù

û

ú
ú
ú
ú
ú
ú
ú
ú
ú
ú
ú
ú
ú

The nature of extreme points can be determined by studying the set of bordered Hessian matrices:

H

f

x

g

x

g

x

H

f

x

f

x x

g

x
i

i

i

1
0

21
2

1

1

2

1
2

2

1 2

=

é

ë

ê
ê
ê
ê

ù

û

ú
ú
ú
ú

=

¶
¶

¶
¶

¶
¶

¶
¶

¶
¶ ¶

¶
¶ 11

2

1 2

2

2
2

2

1 2

0

¶
¶ ¶

¶
¶

¶
¶

¶
¶

¶
¶

f

x x

f

x

g

x

g

x

g

x

i

i i

é

ë

ê
ê
ê
ê
ê
ê
ê
ê

ù

û

ú
ú
ú
ú
ú
ú
ú
ú

HHn H=

For a single restriction g
1
, if H1 < 0, H2 < 0, H3 < 0,…, H < 0, then the extreme point is a minimum.

For a single restriction g
1
, if H1 > 0, H2 < 0, H3 > 0, H4 < 0, H5 > 0, … then the extreme point is a maximum.

For a collection of restrictions g
i
(x

1
,…, x

n
) (i = 1, 2,…, k) the lower right 0 will be a block of zeros and the conditions

for a mimimum will all have sign (-1)k, while the conditions for a maximum will have alternating signs with H1 having
sign (-1)k+1 . When considering several restrictions at the same time, it is easier to determine the nature of the extreme
point by simple inspection.

As an example we find and classify the extreme points of the function:

f x y z x z(, ,) = +

subject to the restriction:

x y z2 2 2 1+ + = .

First we find the Lagrangian L, which is a linear combination of the objective function and the constraints:
 
>> syms x y z L p
>> f = x + z
  
f =
  
x + z
  

Chapter 7 ■ Differentiation in one and Several Variables. Applications to Optimization

132

>> g = x ^ 2 + y ^ 2 + z ^ 2-1
  
g =
  
x ^ 2 + y ^ 2 + z ^ 2 - 1
  
>> L = f + p * g
  
L =
  
x + z + p *(x^2 + y^2 + z^2-1)
 

Then, the possible extreme points are obtained by solving the system obtained by setting the components of the
gradient vector of L equal to zero, that is,  L(x

1
,x

2
,…,x

n
,l) =(0,0,…,0). Which translates into:

 
>> [x, y, z, p] = solve (diff(L,x), diff(L,y), diff(L,z), diff(L,p), x, y, z, p)
  
x =
  
-2 ^(1/2)/2
 2 ^(1/2)/2
  
y =
  
 2 ^(1/2)/2
-2 ^(1/2)/2
 
z =
  
0
0
  
p =
  
 2 ^(1/2)/2
-2 ^(1/2)/2
 

By matching all the partial derivatives to zero and solving the resulting system, we find the values of x
1
, x

2
,…, x

n
,

l
1
, l

2
,…,l

k
 corresponding to possible maxima and minima.

We already see that the possible extreme points are:

(-√2/2, √2/2, 0) and (√2/2, -√2/2, 0)

Now, let us determine the nature of these extreme points. To this end, we substitute them into the objective function.
 
>> clear all
>> syms x y z
>> f=x+z
  
f =
  
x + z
  

Chapter 7 ■ Differentiation in one and Several Variables. Applications to Optimization

133

>> subs(f, {x,y,z},{-sqrt(2)/2,sqrt(2)/2,0})
 
ans =
 
-0.7071
 
>> subs(f, {x,y,z},{sqrt(2)/2,-sqrt(2)/2,0})
 
ans =
 
0.7071
 

Thus, at the point (-√2/2, √2/2, 0) the function has a maximum, and at the point (√2/2, -√2/2, 0) the function has
a minimum.

7.7 Vector Differential Calculus
Here we shall introduce four classical theorems of differential calculus in several variables: the chain rule or
composite function theorem, the implicit function theorem, the inverse function theorem and the change of variables
theorem.

Consider a function F : Rm ® Rn:

(x
1
, x

2
,…, x

m
) ® [F

1
(x

1
, x

2
,…, x

m
),…,F

n
(x

1
, x

2
,…, x

m
)]

The vector function F is said to be differentiable at the point a =(a
1
,…,a

m
) if each of the component functions

F
1
, F

2
,…, F

n
 is differentiable.

The Jacobian matrix of the above function is defined as:

J

F

x

F

x

F

x

F

x

F

x

F

x

n

n=

¶
¶

¶
¶

¶
¶

¶
¶

¶
¶

¶
¶

1

1

1

2

1

2

1

2

2

2

.......

.......

........

.......
¶
¶

¶
¶

¶
¶

F

x

F

x

F

x
n n n

n1 2

é

ë

ê
ê
ê
ê
ê
ê
ê
ê
êê

ù

û

ú
ú
ú
ú
ú
ú
ú
ú
ú

=
¶
¶

(, ,...,)

(, ,...,)

F F F

x x x
n

n

1 2

1 2

The Jacobian of a vector function is an extension of the concept of a partial derivative for a single-component
function.

MATLAB has the command jacobian which enables you to calculate the Jacobian matrix of a function.
As first example we calculate the Jacobian of the vector function mapping (x,y,z) to (x * y * z, y, x + z).

 
>> syms x y z
>> jacobian([x*y*z; y; x+z],[x y z])
  
ans =
  
[y * z, x * z, x * y]
[0, 1, 0]
[1, 0, 1]
 

Chapter 7 ■ Differentiation in one and Several Variables. Applications to Optimization

134

As second example we calculate the Jacobian of the vector function f (x,y,z) = (ex,cos(y),sin(z)) at the
point (0,-p / 2, 0).
 
>> syms x y z
 
>> J = jacobian ([exp(x), cos(y), sin(z)], [x, y, z])
  
J =
 
[exp(x), 0, 0]
[0,-sin(y), 0]
[0, 0, cos(z)]
  
>> subs(J,{x,y,z},{0,-pi/2,0})
 
ans =
 
1 0 0
0 1 0
0 0 1
 

Thus the Jacobian turns out to be the identity matrix.

7.8 The Composite Function Theorem
The chain rule or composite function theorem allows you to differentiate compositions of vector functions. The chain
rule is one of the most familiar rules of differential calculus. It is often first introduced in the case of single variable real
functions, and is then generalized to vector functions. It says the following:

Suppose we have two vector functions

g U R R and f V R Rn m m p: :Ì ® Ì ®

where U and V are open and consider the composite function f g R Rn p
 : ® .

If g is differentiable at x0 and f is differentiable at y g x0 0= (), then f g is differentiable at x0 and we have the
following:

D f g x Df y Dg x()() () () 0 0 0=

MATLAB will directly apply the chain rule when instructed to differentiate composite functions.
Let us take for example f (x,y) = x2 + y and h u u u() = ()(sin ,cos())3 8 . If g x y f h u, (())() = we calculate the Jacobian

of g at (0,0) as follows.
 
>> syms x y u
>> f = x ^ 2 + y
  
f =
  
x ^ 2 + y
  

Chapter 7 ■ Differentiation in one and Several Variables. Applications to Optimization

135

>> h = [sin(3*u), cos(8*u)]
  
h =
  
[sin(3*u), cos(8*u)]
 
>> g = compose (h, f)
  
g =
  
[sin(3*x^2 + 3*y), cos(8*x^2 + 8*y)]
  
>> J = jacobian(g,[x,y])
  
J =
  
[6 * x * cos(3*x^2 + 3*y), 3 * cos(3*x^2 + 3*y)]
[- 16 * x * sin(8*x^2 + 8*y), - 8 * sin(8*x^2 + 8*y)]
 
>> H = subs(J,{x,y},{0,0})
 
H =
 
 0 3
 0 0 

7.9 The Implicit Function Theorem
Consider the vector function F : A Ì Rn + m ® R m where A is an open subset of Rn + m

(,) (,),..., (,)x y F x y F x yF
m¾®¾ []1

If F
i
 (i = 1, 2,…, m) are differentiable with continuous derivatives up to order r and the Jacobian matrix

J = ∂ (F
1
,…, F

m
) / ∂ (y

1
,…, y

m
) has non-zero determinant at a point (,)x y0 0 such that F x y(,)0 0 0= , then there is an

open UÌRn containing x0 and an open VÌ Rm containing to y0 and a single-valued function f : U ® V such that
F x f x, ()éë ùû = 0 "x ÎU and f is differentiable of order r with continuous derivatives.

This theorem guarantees the existence of certain derivatives of implicit functions. MATLAB allows differentiation
of implicit functions and offers the results in those cases where the hypothesis of the theorem are met.

As an example we will show that near the point (x, y, u, v) = (1,1,1,1) the following system has a unique solution:

xy yvu

xu y v

+ =

+ =

2

3 2 4

2

2

where u and v are functions of x and y (u = u(x, y), v = v(x, y)).
First, we check if the hypothesis of the implicit function theorem are met at the point (1,1,1,1).
The functions are differentiable and have continuous derivatives. We need to show that the corresponding

Jacobian determinant is non-zero at the point (1,1,1,1).
 

Chapter 7 ■ Differentiation in one and Several Variables. Applications to Optimization

136

>> clear all
>> syms x y u v
>> f = x * y + y * v * u ^ 2-2
  
f =
  
v * y * u ^ 2 + x * y - 2
  
>> g = x * u ^ 3 + y ^ 2 * v ^ 4-2
  
g =
  
x * u ^ 3 + v ^ 4 * y ^ 2 - 2
  
>> J = simplify (jacobian([f,g],[u,v]))
  
J =
  
[2 * u * v * y, u ^ 2 * y]
[3 * u ^ 2 * x, 4 * v ^ 3 * y ^ 2]
  
>> D = det (subs(J,{x,y,u,v},{1,1,1,1}))
 
D =
 
 5 

7.10 The Inverse Function Theorem
Consider the vector function f : U Ì Rn ® Rn where U is an open subset of Rn

(x
1
, x

2
,…, x

n
) ® [f

1
(x

1
, x

2
,…, x

n
),…,f

n
(x

1
, x

2
,…, x

n
)]

and assume it is differentiable with continuous derivative.
If there is an x0 such that |J| = |∂(f

1
,…,f

n
) / ∂(x

1
,…,x

n
)| ¹ 0 at x

0
, then there is an open set A containing x0 and an

open set B containing f x()0 such that f A B() = and f has an inverse function f B A- ®1 : that is differentiable with
continuous derivative. In addition we have:

D f y D f x- -
= éë ùû

1 1
() () and if J = ∂ (f1,…, fn) / ∂ (x

1
,…, x

n
) then |J-1| = 1 / |J|.

MATLAB automatically performs the calculations related to the inverse function theorem, provided that the
assumptions are met.

As an example, we consider the vector function (u(x, y), v(x, y)), where:

u x y
x y

x
v x y x y, , , sin cos .() = + () = () + ()

4 4

We will find the conditions under which the vector function (x(u,v), y(u,v)) is invertible, with x = x (u, v) and
y = y(u,v), and find the derivative and the Jacobian of the inverse transformation. We will also find its value at the
point (p/4,–p/4).

Chapter 7 ■ Differentiation in one and Several Variables. Applications to Optimization

137

The conditions that must be met are those described in the hypothesis of the inverse function theorem. The
functions are differentiable with continuous derivatives, except perhaps at x = 0. Now let us consider the Jacobian of
the direct transformation ∂ (u(x, y), v(x,y)) /∂(x, y):
 
>> syms x y
>> J = simple ((jacobian ([(x^4+y^4)/x, sin (x) + cos (y)], [x, y])))
  
J =
  
[3 * x ^ 2-1/x ^ 2 * y ^ 4, 4 * y ^ 3/x]
[cos(x),-sin(y)]
 
>> pretty (det (J))
  
 4 4 3
 3 sin(y) x - sin(y) y + 4 y cos (x) x
 - ---------------------------------------
 2
 x
 

Therefore, at those points where this expression is non-zero, we can solve for x and y in terms of u and v.
In addition, we also must have that x¹ ≠ 0.

We calculate the derivative of the inverse function. Its value is the inverse of the initial Jacobian matrix and its
determinant is the reciprocal of the determinant of the initial Jacobian matrix:
 
>> I = simple(inv(J));
>> pretty(simple(det(I)))
  
 2
 x
 - ---------------------------------------
 4 4 3
 3 sin(y) x - sin(y) y + 4 y cos (x) x
 

Observe that the determinant of the Jacobian of the inverse vector function is indeed the reciprocal of the
determinant of the Jacobian of the original function.

We now find the value of the inverse at the point (p/4-p/4):
 
>> numeric(subs(subs(determ(I),π/4,'x'),–π/4,'y'))
 
ans =
 
 0.38210611216717
 
>> numeric(subs(subs(symdiv(1,determ(J)),π/4,'x'),–π/4,'y'))
 
ans =
 
 0.38210611216717
  

Again these results confirm that the determinant of the Jacobian of the inverse function is the reciprocal of the
determinant of the Jacobian of the function.

Chapter 7 ■ Differentiation in one and Several Variables. Applications to Optimization

138

7.11 The Change of Variables Theorem
The change of variable theorem is another key tool in multivariable differential analysis. Its applications extend to any
problem in which it is necessary to transform variables.

Suppose we have a function f(x,y) that depends on the variables x and y, and that meets all the conditions of
differentiation and continuity necessary for the inverse function theorem to hold. We introduce new variables u and
v, relating to the above, regarding them as functions u = u(x,y) and v = v(x,y), so that u and v also fulfil the necessary
conditions of differentiation and continuity (described by the inverse function theorem) to be able to express x and y
as functions of u and v: x = x (u,v) and y = y(u,v).

Under the above conditions, it is possible to express the initial function f as a function of the new variables u and
v using the expression:

f(u,v) = f (x(u,v), y(u,v))|J| where J is the Jacobian ∂(x (u, v), y(u,v)) /∂(u, v).

The theorem generalizes to vector functions of n components.
As an example we consider the function f (x, y) = e− (x + y) and the transformation u = u(x,y) = x + y, v = v(x,y) = x to

finally find f(u,v).
We calculate the inverse transformation and its Jacobian to apply the change of variables theorem:

 
>> syms x y u v
>> [x, y] = solve('u = x+y,v = x','x','y')
  
x =
  
v
  
y =
  
u-v
 
>> jacobian([v,u-v],[u,v])
  
ans =
  
[0, 1]
[1, - 1]
 
>> f = exp(x-y);
>> pretty (simple (subs(f,{x,y},{v,u-v}) * abs (det (jacobian ()))
 ((([v, u-v], [u, v])))
  
 exp(2 v-u)
 

The requested function is f(u,v) = e 2v-u.

7.12 Series Expansions in Several Variables
The familiar concept of a power series representation of a function of one variable can be generalized to several
variables. Taylor’s theorem for several variables theorem reads as follows:

Let f:Rn ® R, (x
1
,…,x

n
) ® f(x

1
,…,x

n
), be differentiable k times with continuous partial derivatives.

Chapter 7 ■ Differentiation in one and Several Variables. Applications to Optimization

139

The Taylor series expansion of order k of f x() at the point a a an= (,...,)1 is as follows:

f x f a
f

x
a t

f

x x
a t t

ii

n

i
j

n

i ji

n

i j() () ()
!

()= + + +
= ==
å åå¶

¶
¶

¶ ¶1 1

2

1

1

2

1

3!!
() ... ()

j

n

k

n

i j ki

n

i j k

f

x x x
a t t t R k

= ==
å åå + + +

1 1

3

1

1
¶

¶ ¶ ¶

Here x ax x x a a a t x a i nn n i i i= ¼() = ¼() = - = ¼()1 2 1 2 1 2, , , , , , , , , , , .


R = remainder.
Normally, the series are given up to order 2.
As an example we find the Taylor series up to order 2 of the following function at the point (1,0):

f x y e yx, cos()()() = -1 2

 
>> pretty(simplify(subs(f,{x,y},{1,0})+subs(diff(f,x),{x,y},{1,0})*(x-1)
+subs(diff(f,y),{x,y},{1,0})*(y)+1/2*(subs(diff(f,x,2),{x,y},{1,0})*
(x-1)^2+subs(diff(f,x,y),{x,y},{1,0})*(x-1)*(y)+ subs(diff(f,y,2),{x,y},{1,0})* (y)^2)))
  
 2
 2 y
 (x - 1) - -- + 1
 2  

7.13 Vector Fields. Curl, Divergence and the Laplacian
The most common concepts used in the study of vector fields are directly treatable by MATLAB and are
summarized below.

Definition of gradient: If h = f(x,y,z), then the gradient of f, which is denoted by Df(x,y,z), is the vector:

Grad f f x y z
f x y z

x
i

f x y z

y
j

f x y z

z
k() = () = ¶

¶
+
¶

¶
+
¶

¶
D , ,

(, ,) (, ,) (, ,)

Definition of a scalar potential of a vector field: A vector field F is called conservative if there is a differentiable
function f such that F = fD . The function f is known as a scalar potential function for F .

Definition of the curl of a vector field: The curl of a vector field F(x,y,z) = Mi + Nj + Pk is the following:

curl F x y z F x y z
P

y

N

z
i

P

x

M

z
j, , , ,() = ´ () = ¶

¶
-
¶
¶

æ

è
ç

ö

ø
÷ -

¶
¶

-
¶
¶

æ
è
ç

ö
ø
÷D ++

¶
¶

-
¶
¶

æ

è
ç

ö

ø
÷

N

x

M

y
k

Definition of a vector potential of a vector field: A vector field F is a vector potential of another vector field
G if F = curl (G).

Definition of the divergence of a vector field: The divergence of the vector field F(x,y,z) = Mi + Nj + Pk is the
following:

diverge F x y z F x y z
M

x

N

y

P

z
, , , ,() = () = ¶

¶
+
¶
¶

+
¶
¶

D·

Definition of the Laplacian: The Laplacian is the differential operator defined by:

Laplacian
x y z

= = =
¶
¶

+
¶
¶

+
¶
¶

D D D2
2

2

2

2

2

2
·

Chapter 7 ■ Differentiation in one and Several Variables. Applications to Optimization

140

As a first example, we calculate gradient and Laplacian of the function:	

w
x y z

=
- - -

1

1 2 2 2

 
>> gradient = simplify([diff(f,x), diff(f,y), diff(f,z)])
  
gradient =
  
[x /(-x^2-y^2-z^2 + 1) ^(3/2), y /(-x^2-y^2-z^2 + 1) ^(3/2), z /(-x^2-y^2-z^2 + 1) ^(3/2)]
  
>> pretty (gradient)
  
 +- -+
 | x y z |
 | ---------------------, ---------------------, --------------------- |
 | 3 3 3 |
 | - - - |
 | 2 2 2 |
 | 2 2 2 2 2 2 2 2 2 |
 | (- x - y - z + 1) (- x - y - z + 1) (- x - y - z + 1) |
 +- -+
 
>> Laplacian = simplify ([diff(f,x,2) + diff(f,y,2) + diff(f,z,2)])
  
Laplacian =
  
3 /(-x^2-y^2-z^2 + 1) ^(5/2)
  
>> pretty (Laplacian)
  
 3

 5
 -
 2
 2 2 2
 (- x - y - z + 1)
 

As a second example, we calculate the curl and the divergence of the vector field:

F i kx y z
x

y
x y j, , tan ln .() = + + +-1 2 2

 
>> M = atan (x/y)
  
M =
  
atan (x/y)
  

Chapter 7 ■ Differentiation in one and Several Variables. Applications to Optimization

141

>> N = log (sqrt(x^2+y^2))
  
N =
  
log ((x^2 + y^2) ^(1/2))
  
>> P = 1
 
P =
 1
 
>> Curl = simplify ([diff(P,y)-diff(N,z), diff(P,x)-diff(M,z), diff(N,x)-diff(M,y)])
  
Curl =
  
[0, 0, (2 * x) /(x^2 + y^2)]
  
>> pretty (Curl)
  
 +- -+
 | 2 x |
 | 0, 0, ------- |
 | 2 2 |
 | x + y |
 +- -+
 
>> Divergence = simplify (diff(M,x) + diff(N,y) + diff(P,z))
  
Divergence =
  
(2 * y) /(x^2 + y^2)
  
>> pretty (divergence)
  
 2 y

 2 2
 x + y 

Spherical, Cylindrical and Rectangular Coordinates
MATLAB allows you to easily convert cylindrical and spherical coordinates to rectangular, cylindrical to spherical and
their inverse transformations. As the cylindrical and spherical coordinates, we have the following:

In a cylindrical coordinate system, a point P in the space is represented by a triplet (r, q, z), where:

r is the distance from the origin (O) to the projection P' of P in the XY plane

q is the angle between the X axis and the segment OP'

z is the distance PP'

Chapter 7 ■ Differentiation in one and Several Variables. Applications to Optimization

142

In a spherical coordinate system, a point P in the space is represented by a triplet (r, q, f), where:

r is the distance from P to the origin

q is the same angle as the one used in cylindrical coordinates

j is the angle between the positive Z axis and the segment OP

The following conversion equations are easily found:
Cylindrical to rectangular:

x r= cosq
y r= sinq
z z=

Rectangular to cylindrical:

r x y= +2 2

q = -tan 1 y

x

z z=

Spherical to rectangular:

x = r f qsin cos

y = r f qsin sin

z = r fcos

Rectangular to spherical:

r = + +x y z2 2 2

q = -tan 1 y

x

f =
+ +

-cos 1

2 2 2

z

x y z

As a first example we express the surfaces with equations given by xz = 1 and x2 + y2 + z2 = 1 in spherical
coordinates.
 
>> clear all
>> syms x y z r t a
>> f = x * z-1
  
f =
  
x * z - 1
  

Chapter 7 ■ Differentiation in one and Several Variables. Applications to Optimization

143

>> equation = simplify (subs (f, {x, y, z}, {r * sin (a) * cos (t), r * sin (a) * sin (t),
r * cos (a)}))
  
equation =
  
r ^ 2 * cos (a) * sin (a) * cos (t) - 1
  
>> pretty (equation)
  
 2
 r cos (a) sin (a) cos (t) - 1
 
g =
  
x ^ 2 + y ^ 2 + z ^ 2 - 1
  
>> equation1 = simplify (subs (g, {x, y, z}, {r * sin (a) * cos (t), r * sin (a) * sin (t),
r * cos (a)}))
  
equation1 =
  
r ^ 2 - 1
  
>> pretty (equation1)
  
 2
 r -1
 

EXERCISE 7-1

Study the differentiability of the function:

f x x
x

() = æ
è
ç

ö
ø
÷

2 1
sin if x ¹ 0 and f (x) = 0 if x = 0.

We begin by studying the continuity of the function at the point x  = 0.
 
>> syms x
>> f = x ^ 2 * sin(1/x)
  
f =
  
x ^ 2 * sin(1/x)
 
>> limit(f,x,0, 'right')
  
ans =
  
0
  

Chapter 7 ■ Differentiation in one and Several Variables. Applications to Optimization

144

>> limit(f,x,0, 'left')
  
ans =
  
0
  
>>
>> limit(f,x,0)
  
ans =
  
0
 
We see that the function is continuous at x = 0 because the limit of the function as x tends to zero coincides with
the value of the function at zero. It may therefore be differentiable at zero.

We now determine whether the function is differentiable at the point x = 0:
 
>> syms h, limit((h^2*sin(1/h) - 0)/h,h,0)
  
ans =
  
0
 
Thus, we see that:

lim
() ()

’()
h

f h f

h
f

®

+ -
= =

0

0 0
0 0

which indicates that the function f is differentiable at the point x = 0.

Let us now see what happens at a non-zero point x = a:
 
>> pretty(simple(limit((subs(f,{x},{a+h})-subs(f,{x},{a}))/h,h,a)))
  
 / 1 \ / 1 \
 4-sin | --- | -a sin| -- |
 \ 2 a / \ a /
 
Thus, we conclude that:

lim
()

sin sin
h

f a h f a

h
f a a

a a®

+() -
= () = æ

è
ç

ö
ø
÷ -

æ
è
ç

ö
ø
÷0

4
1

2

1
¢

Chapter 7 ■ Differentiation in one and Several Variables. Applications to Optimization

145

Thus, we have already found the value of the derivative at any non-zero point x = a. We represent the function in
the figure below.
 
>> fplot ('x ^ 2 * sin (x)', [-1/10,1/10]) 

EXERCISE 7-2

Calculate the derivative with respect to x of the following functions:

log sin , , , log .tan()2
4

3

1

2
1

2

2
2x x

x

x
x xx()() -

+
+ +()

 
>> pretty(simple(diff('log(sin(2*x))','x')))
 
2 cot(2 x)
 
>> pretty(simple(diff('x^tanx','x')))
  
 tanx
 x tanx

 x
 
>> pretty(simple(diff('(4/3)*sqrt((x^2-1)/(x^2+2))','x')))
  
 x
 4 -----------------------
 2 1/2 2 3/2
 (x - 1) (x + 2)
 

Chapter 7 ■ Differentiation in one and Several Variables. Applications to Optimization

146

>> pretty(simple(diff('log(x+(x^2+1)^(1/2))','x')))
  
 1

 2 1/2
 (x + 1) 

EXERCISE 7-3

Calculate the nth derivative of the following functions:

1 1

1
2

x
e

x

x
x, ,

+
+

 
>> f = '1/x';
>> [diff(f),diff(f,2),diff(f,3),diff(f,4),diff(f,5)]
 
ans =
-1/x ^ 2 2/x ^ 3 -6/x ^ 4 24/x ^ 5 -120/x ^ 6
 
We begin to see the pattern emerging, so the nth derivative is given by

() !
.

-
+

1
1

n

n

n
x

 
>> f = 'exp(x/2)';
>> [diff(f),diff(f,2),diff(f,3),diff(f,4),diff(f,5)]
 
ans =
 
1/2*exp(1/2*x) 1/4*exp(1/2*x) 1/8*exp(1/2*x) 1/16*exp(1/2*x 1/32*exp(1/2*x)
 
Thus the nth derivative is

e x

n

/2

2
.

 
>> f = '(1+x)/(1-x)';
>> [simple(diff(f)),simple(diff(f,2)),simple(diff(f,3)),simple(diff(f,4))]
 
ans =
 
2 /(-1+x) ^ 2-4 /(-1+x) ^ 3 12 /(-1+x) ^ 4-48 /(-1+x) ^ 5
 
Thus, the nth derivative is equal to

2

1 1

(!)

()

n
x n- + .

Chapter 7 ■ Differentiation in one and Several Variables. Applications to Optimization

147

EXERCISE 7-4

Find the equation of the tangent to the curve:

f (x) = 2x 3 + 3x 2 - 12x + 7 at x = –1.

Also find the x for which the tangents to the curve g()x x x
x

=
- -
-

2 4

1
 are horizontal and vertical. Find the

asymptotes.
 
>> f ='2 * x ^ 3 + 3 * x ^ 2-12 * x + 7';
>> g = diff (f)
 
g =
 
6*x^2+6*x-12
 
>> subs(g,-1)
 
ans =
 
-12
 
>> subs(f,-1)
 
ans =
 
20
 
We see that the slope of the tangent line at the point x = –1 is – 12, and the function has value 20 at x = –1.
Therefore the equation of the tangent to the curve at the point (–1,20) will be:

y – 20 = –12 (x – (–1))

We graphically represent the curve and its tangent on the same axes.
 
>> fplot('[2*x^3+3*x^2-12*x+7, 20-12*(x - (-1))]',[-4,4])
 

Chapter 7 ■ Differentiation in one and Several Variables. Applications to Optimization

148

To calculate the horizontal tangent to the curve y = f (x) at x = x0, we find the values x0 for which the slope of
the tangent is zero (f'(x0) = 0). The equation of this tangent will therefore be y = f(x0).

To calculate the vertical tangents to the curve y = f (x) at x = x0, we find the values x0 which make the slope of
the tangent infinite (f'(x0) = ∞). The equation of this tangent will then be x = x0 :
 
>> g ='(x^2-x+4) /(x-1)'
>> solve(diff(g))
 
ans =
 
[3]
[-1]
 
>> subs(g,3)
 
ans =
 
5
 
>> subs(g,-1)
 
ans =
 
-3
 
The two horizontal tangents have equations:

y = g’[-1] (x+1) – 3 , that is, y = –3.

y = g’[3] (x – 3) + 5 , that is, y = 5.

The horizontal tangents are not asymptotes because the corresponding values of x0 are finite (-1 and 3).

We now consider the vertical tangents. To do this, we calculate the values of x that make g ' (x) infinite
(i.e. values for which the denominator of g ' is zero, but does not cancel with the numerator):
 
>> solve('x-1')
 
ans =
 
1
 
Therefore, the vertical tangent has equation x = 1.

For x = 1 , the value of g(x) is infinite, so the vertical tangent is a vertical asymptote.
 
subs(g,1)
Error, division by zero
 
Indeed, the line x = 1 is a vertical asymptote.

Chapter 7 ■ Differentiation in one and Several Variables. Applications to Optimization

149

As lim
x

g x
®¥

() = ¥ , there are no horizontal asymptotes.

Now let us see if there are any oblique asymptotes:
 
>> syms x,limit(((x^2-x+4)/(x-1))/x,x,inf)
 
ans =
 
1
 
>> syms x,limit(((x^2-x+4)/(x-1) - x)/x,x,inf)
 
ans =
 
0
 
Thus, there is an oblique asymptote y = x.

We now graph the curve with its asymptotes and tangents:

On the same axes (see the figure below) we graph the curve whose equation is g (x) = (x 2–x + 4) /(x–1), the
horizontal tangents with equations a(x) = – 3 and b(x) = 5, the oblique asymptote with equation c (x) = x and the
horizontal and vertical asymptotes (using the default command fplot ):
 
>> fplot('[(x^2-x+4)/(x-1),-3,5,x]',[-10,10,-20,20]) 

Chapter 7 ■ Differentiation in one and Several Variables. Applications to Optimization

150

EXERCISE 7-5

Decompose a positive number a as a sum of two summands so that the sum of their cubes is minimal.

Let x be one of the summands. The other will be a-x. We need to minimize the sum x3+ (a-x) 3.
 
>> syms x a;
>> f = 'x^3+(a-x)^3'
 
f =
 
x^3+(a-x)^3
>> solve(diff(f,'x'))
 
ans =
 
1/2 * a
 
The possible maximum or minimum is at x = a/2. We use the second derivative to see that it is indeed a
minimum:
 
>> subs(diff(f,'x',2),'a/2')
 
ans =
 
3 * a
 
As a > 0 (by hypothesis), 4a > 0, which ensures the existence of a minimum at x = a/2.

Therefore x = a/2 and a-x = a-a/2= a/2. That is, we obtain a minimum when the two summands are equal.

EXERCISE 7-6

Suppose you want to purchase a rectangular plot of 1600 square meters and then fence it. Knowing that the
fence costs 200 cents per meter, what dimensions must the plot of land have to ensure that the fencing is most
economical?

If the surface area is 1600 square feet and one of its dimensions, unknown, is x, and the other will be 1600/x.

The perimeter of the rectangle is p (x) = 2x + 2(1600/x), and the cost is given by f(x) = 200 p(x):
 
>> f ='200 * (2 * x + 2 *(1600/x))'
 
f =
 
200 * (2 * x + 2 *(1600/x))
 

Chapter 7 ■ Differentiation in one and Several Variables. Applications to Optimization

151

This is the function to minimize:
 
>> solve (diff (f))
 
ans =
 
[40]
[-40]
 
The possible maximum and minimum are presented for x = 40 and x =– 40. We use the second derivative to
determine their nature:
 
>> [subs (diff(f,2), 40), subs (diff(f,2), - 40)]
 
ans =
 
20 - 20
 
x = 40 is a minimum, and x = –40 is a maximum. Thus, one of the sides of the rectangular field is 40 meters, and
the other will measure 1,600/40 = 40 meters. Therefore the optimal rectangle is a square with sides of
40 meters.

EXERCISE 7-7

Given the function of two real variables defined by:

f x y
xy

x y
,() =

+2 2 if x y2 2 0+ ¹ and f x y,() = 0 if x y2 2 0+ =

calculate the partial derivatives of f at the origin. Study the differentiability of the function.

To find ∂f/∂x and ∂f/∂y at the point (0,0), we directly apply the definition of the partial derivative at a point:
 
>> syms x y h k
>> limit((subs(f,{x,y},{h,0})-0)/h,h,0)
  
ans =
  
0
 
>> limit((subs(f,{x,y},{0,k})-0)/k,k,0)
  
ans =
  
0
 

Chapter 7 ■ Differentiation in one and Several Variables. Applications to Optimization

152

We see that the limits of the two previous expressions when h ® 0 and k ® 0, respectively, are both zero.
That is to say:

lim
, (,)

(,)

lim
, (,)

(

h

k

f h f

h

f

x
f k f

k

f

y

®

®

() -
=
¶
¶

=

() -
=
¶
¶

0

0

0 0 0
0 0 0

0 0 0
00 0 0,) =

Thus the two partial derivatives have the same value, namely zero, at the origin.

But the function is not differentiable at the origin, because it is not continuous at (0,0), since it has no limit as
(x,y) ® (0,0):
 
>> syms m
>> limit((m*x)^2/(x^2+(m*x)^2),x,0)
  
ans =
  
m^2 /(m^2 + 1)
 
The limit does not exist at (0,0), because if we consider the directional limits with respect to the family of straight
lines y = mx, the result depends on the parameter m.

EXERCISE 7-8

Given the function:

f x y e x y
x y

, cos sin ()() = () +()-
+2 2

8 2 2

calculate:

¶
¶

¶
¶

¶
¶ ¶

¶
¶

¶
¶

¶
¶ ¶

¶
¶ ¶

¶
¶

f

x

f

y

f

x y

f

x

f

y

f

x y

f

x y

f

x
, , , , , ,

2 2

2

2

2

3

2

4

2 2

5

and
33 2¶y

and find their values at the point (p/3, p/6).
 
>> f = exp (-(x^2+y^2)/8) * (cos (x) ^ 2 + sin (y) ^ 2)
  
f =
  
>> (cos (x) ^ 2 + sin (y) ^ 2) /exp(x^2/8 + y^2/8)
  
>> pretty(simple(diff(f,x)))
  

Chapter 7 ■ Differentiation in one and Several Variables. Applications to Optimization

153

 2 2
 x cos (x) + x sin (y) + 4 sin (2 x)
 - ----------------------------------
 / 2 2 \
 | x y |
 4 exp| -- + -- |
 \ 8 8 /
 
>> pretty (simple (diff(f,y)))
  
 2 2
 y cos (x) + y sin (y) - 4-sin(2 y)
 - ----------------------------------
 / 2 2 \
 | x y |
 4 exp| -- + -- |
 \ 8 8 /
 
>> pretty(simple(diff(diff(f,x),y)))
  
 2 2
 x y cos (x) + x y (y) - 4 x sin(2 y) + 4 y sin(2 x)

 / 2 2 \
 | x y |
 16 exp| -- + -- |
 \ 8 8 /
 
>> pretty(simple(diff(diff(f,x),x)))
  
 2 2
 x cos(2 x) x cos(2 y)
 2 cos(2 y) - 34 (2 x) cos + 8 x sin (2 x) + --------- - ------------ + x2 - 4
 2 2
 --
 / 2 2 \
 | x y |
 16 exp| -- + -- |
 \ 8 8 /
 
>> pretty (simple (diff (diff(f,y), y)))
  
 2 2
 y cos (2 x) y cos(2 y) 2
 2 cos (2 x) - 34 cos(2 y) + 8 y sin(2 y) - --+-------- ----------- - y + 4
 2 2
 - --
 / 2 2 \
 | x y |
 16 exp| -- + -- |
 \ 8 8 /
 

Chapter 7 ■ Differentiation in one and Several Variables. Applications to Optimization

154

>> pretty(simple(diff(diff(diff(f,x),y),y)))
  
 2 2
(8 x + 32 sin (2 x) + 4 x (2 x) cos - 68 x cos(2 y) - 8 y sin(2 x) - 2 x y +)
  
 / / 2 2 \ \
 2 2 | | x y | |
 16 x y sin(2 y) - x y cos (2 x) + x y cos(2 y)) / | 128 exp| -- + -- | |
 \ \ 8 8 / /
 
>> pretty(simple(diff(diff(diff(diff(f,x),x),y),y)))
  
 2 2 2
(272 cos (2 x) – 272 cos(2 y) + 2 x y - 64 x sin (2 x) + 64 y sin(2 y) - 4 x cos(2 x) +)
  
 2 2 2 2 2 2 2
 68 x cos(2 y) - 68 y cos (2 x) + 4 y cos(2 y) - 8 x - 8 y + x y cos (2 x) -
  
 / / 2 2 \ \
 2 2 2 2 | | x y | |
 X y (cos(2 y) + 16 x y sin(2 x) - 16 x sin(2 y) + 32) / | 512 exp| -- + -- | |
 \ \ 8 8 / /
 
>> pretty(simple(diff(diff(diff(diff(diff(f,x),x),x),y),y)))
  
 3 2 3
-(96 x + 2432 sin (2 x) + 2 x y + 816 x cos (2 x) - 816 x cos(2 y) - 4 x cos(2 x) +)
  
 3 2 2 2 3 3 2
 68 x cos(2 y) - 96 x sin (2 x) - 608 y sin(2 x) - 24 x y - 8 x + x y cos (2 x) -
  
 3 2 2 2 2
 x y cos(2 y) + 24 x y sin(2 x) + 192 x y sin(2 y) - 204 x y cos (2 x) +
  
 / / 2 2 \ \
 2 3 | | x y | |
 12 x y cos(2 y) - 16 x y sin(2 y)) / | 2048 exp| -- + -- | |
 \ \ 8 8 / /
 
The values of the previous partial derivatives at the point (p/3, p/6) are calculated as follows (from last to first):
 
>> subs(diff(diff(diff(diff(diff(f,x),x),x),y),y),{x,y},{p/3,p/6})
 
ans =
 
-0.5193
 

Chapter 7 ■ Differentiation in one and Several Variables. Applications to Optimization

155

>> subs(diff(diff(diff(diff(f,x),x),y),y),{x,y},{p/3,p/6})
 
ans =
 
-0.3856
 
>> subs(diff(diff(diff(f,x),y),y),{x,y},{p/3,p/6})
 
ans =
 
0.0250
 
>> subs(diff(diff(f,y),y),{x,y},{p/3,p/6})
 
ans =
 
0.5534
 
>> subs(diff(diff(f,x),x),{x,y},{p/3,p/6})
 
ans =
 
1.1481
 
>> subs(diff(diff(f,x),y),{x,y},{p/3,p/6})
 
ans =
 
-0.0811
 
>> subs(diff(f,y),{x,y},{p/3,p/6})
 
ans =
 
0.6745
 
>> subs(diff(f,x),{x,y},{p/3,p/6})
 
ans =
 
-0.8399 

Chapter 7 ■ Differentiation in one and Several Variables. Applications to Optimization

156

EXERCISE 7-9

Find and classify the extreme points of the function

f(x,y) = 120x3 - 30x4 + 18x5 + 5x6 + 30xy2.

We begin by finding the possible extreme points. To do so, we equate each of the partial derivatives of the
function with respect to each of its variables to zero (i.e. the components of the gradient vector of f  ) and solve the
resulting system in three variables:
 
>> syms x y
>> f = –120 * x ^ 3-30 * x ^ 4 + 18 * x ^ 5 + 5 * x ^ 6 + 30 * x * y ^ 2
  
f =
  
5 * x ^ 6 + 18 * x ^ 5-30 * x ^ 4-120 * x ^ 3 + 30 * x * y ^ 2
  
>> [x y] = solve (diff(f,x), diff(f,y), x, y)
  
x =
  
 0
 2
-2
-3
  
y =
  
0
0
0
0
 
So the possible extreme points are: (– 2,0), (2,0), (0,0) and (– 3,0).

We will analyze what kind of extreme points these are. To do this, we calculate the Hessian matrix and express it
as a function of x and y.
 
>> clear all
>> syms x y
>> f = -120*x^3-30*x^4+18*x^5+5*x^6+30*x*y^2
  
f =
  
5*x^6 + 18*x^5 - 30*x^4 - 120*x^3 + 30*x*y^2
  

Chapter 7 ■ Differentiation in one and Several Variables. Applications to Optimization

157

>> H = simplify([diff(f,x,2),diff(diff(f,x),y);diff(diff(f,y),x),diff(f,y,2)])
  
H =
  
[- 30 * x *(-5*x^3-12*x^2 + 12*x + 24), 60 * y]
[60*y, 60*x]
 
Now we calculate the value of the determinant of the Hessian matrix at the possible extreme points.
 
>> det(subs(H,{x,y},{0,0}))
 
ans =
 
 0
 
The origin turns out to be a degenerate point, as the determinant of the Hessian matrix is zero at (0,0).

We will now look at the point (- 2,0).
 
>> det(subs(H,{x,y},{-2,0}))
 
ans =
 
 57600
 
>> eig(subs(H,{x,y},{-2,0}))
 
ans =
 
 -480
 -120
 
The Hessian matrix at the point (- 2,0) has non-zero determinant, and is also negative definite, because all its
eigenvalues are negative. Therefore, the point (- 2,0) is a maximum of the function.

We will now analyze the point (2,0).
 
>> det(subs(H,{x,y},{2,0}))
 
ans =
 
 288000
 
>> eig(subs(H,{x,y},{2,0}))
 
ans =
 
 120
 2400
 

Chapter 7 ■ Differentiation in one and Several Variables. Applications to Optimization

158

The Hessian matrix at the point (2,0) has non-zero determinant, and is furthermore positive definite, because all
its eigenvalues are positive. Therefore, the point (2,0) is a minimum of the function.

We will now analyze the point (- 3,0).
 
>> det(subs(H,{x,y},{-3,0}))
 
ans =
 
 -243000
 
>> eig(subs(H,{x,y},{-3,0}))
 
ans =
 
 -180
 1350
 
The Hessian matrix at the point (– 3,0) has non-zero determinant, and, in addition, is neither positive definite nor
negative, because it has both positive and negative eigenvalues. Therefore, the point (– 3,0) is a saddle point of
the function.

EXERCISE 7-10

Find and classify the extreme points of the function:

f x y z x y z(, ,)= + -2 2

subject to the restrictions: x2 +y2 = 16 and x + y + z = 10.

We first find the Lagrangian L, which is a linear combination of the objective function and the constraints:
 
>> clear all
>> syms x y z L p q
>> f = (x^2+y^2) ^(1/2)-z
  
f =
  
(x ^ 2 + y ^ 2) ^ (1/2) - z
  
>> g1 = x ^ 2 + y ^ 2-16, g2 = x + y + z-10
  
G1 =
  
x ^ 2 + y ^ 2-16
  
G2 =
  
x + y + z - 10
  

Chapter 7 ■ Differentiation in one and Several Variables. Applications to Optimization

159

>> L = f + p * g1 + q * g2
  
L =
  
(x ^ 2 + y ^ 2) ^ (1/2) - z + q *(x + y + z-10) + p *(x^2 + y^2-16)
 
Then, the possible extreme points are found by solving the system obtained by setting the components of the
gradient vector of L to zero, that is, ÑL(x1,x2,…,xn,l) =(0,0,…,0). Which translates into:
 
>> [x, y z, p, q] = solve (diff(L,x), diff(L,y), diff(L,z), diff(L,p), diff(L,q), x, y z, p, q)
  
x =
  
-2 ^(1/2)/8 - 1/8
  
y =
  
1
  
z =
  
2 * 2 ^(1/2)
  
p =
  
2 * 2 ^(1/2)
  
q =
  
10 - 4 * 2 ^(1/2)
 
Matching all the partial derivatives to zero and solving the resulting system, we find the values of x1, x2,…, xn, l1,
l2,…,lk corresponding to possible maxima and minima.

We already have one possible extreme point:

(-(1+√2)/8, 1, 2√2)

We need to determine what kind of extreme point this is. To this end, we substitute it into the objective function.
 
>> syms x y z
>> vpa (subs (f, {x, y, z}, {-2 ^(1/2)/8-1/8,1,2*2^(1/2)}))
  
ans =
  
-1.78388455796197398228741803905
 
Thus, at the point (-(1+Ö2)/8, 1/2Ö2) the function has a maximum.

Chapter 7 ■ Differentiation in one and Several Variables. Applications to Optimization

160

EXERCISE 7-11

Given the role f x y x y(,) ()= - +10 and the transformation u = u(x,y) = 2 x + y, v = v(x,y) = x – y, find f(u,v).

We calculate the inverse transformation and its Jacobian in order to apply the change of variables theorem:
 
>> [x, y] = solve('u=2*x+y,v=x-y','x','y')
  
x =
  
u + v/3
 
y =
  
u - (2 * v) / 3
  
>> jacobian([u/3 + v/3,u/3-(2*v)/3], [u, v])
  
ans =
  
[1/3, 1/3]
[1/3, 2/3]
 
>> f = 10 ^(x-y);
>> pretty (simple (subs(f,{x,y},{u/3 + v/3,u/3-(2*v)/3}) *))
 abs (det (jacobian([u/3 + v/3,u/3-(2*v)/3], [u, v])))
  
 v
 10

 3
 
Thus the requested function is f(u,v) = 10 v/3.

Chapter 7 ■ Differentiation in one and Several Variables. Applications to Optimization

161

EXERCISE 7-12

Find the Taylor series at the origin, up to order 2, of the function:	

f x y e x y(,) = + 2

 
>> f = exp(x+y^2)
  
f =
  
>> pretty (simplify (subs(f,{x,y},{0,0}) + subs (diff(f,x), {x, y}, {0.0}) * (x) + subs
(diff(f,y), {x, y}, {0.0}) * (y) + 1/2 * (subs (diff(f,x,2), {x, y}, {0.0}) * (x) ^ 2 + subs
(diff(f,x,y), {x, y}, {0.0}) * (x) * (y) + subs (diff(f,y,2), {x, y}, {0,0}) * (y) ^ 2)))
 
 2
 x 2
 -- + x + y + 1
 2 

EXERCISE 7-13

Express in Cartesian coordinates the surface which is given in cylindrical coordinates by z = r2 (1 + sin (t)).
 
>> syms x y z r t a
>> f = r ^ 2 * (1 + sin (t))
  
f =
  
r ^ 2 * (sin (t) + 1)
  
>> Cartesian = simplify (subs (f, {r, t}, {sqrt(x^2+y^2), bind (y/x)}))
  
Cartesian =
  
(x ^ 2 + y ^ 2) * (y / (x *(y^2/x^2 + 1) ^(1/2)) + 1)
  
>> pretty (Cartesian)
  
 2 2 / y \
 (x + y) | --------------- + 1 |
 | / 2 \1/2 |
 | | y | |
 | x | -- + 1 | |
 | | 2 | |
 \ \ x / / 

Chapter 7 ■ Differentiation in one and Several Variables. Applications to Optimization

162

EXERCISE 7-14

Find the unit tangent, the unit normal, and the unit binormal vectors of the twisted cubic: x = t, y = t2, z = t3.

We begin by restricting the variable t to the real field:
 
>> x = sym('x','real);
 
We define the symbolic vector V as follows:
 
>> syms t, V = [t,t^2,t^3]
  
V =
  
[t, t ^ 2, t ^ 3]
 
The tangent vector is calculated by:
 
>> tang = diff(V)
  
tang =
  
[1, 2 *, 3 * t ^ 2]
 
The unit tangent vector will be:
 
>> ut = simple (tang/ sqrt (dot(tang,tang)))
  
tu =
  
[1/(1+4*t^2+9*t^4)^(1/2),2*t/(1+4*t^2+9*t^4)^(1/2),3*t^2/(1+4*t^2+9*t^4)^(1/2)]
 
To find the unit normal vector we calculuate ((v'∧v'') ∧v') /(|v'∧v''| |v'|):
 
>> v1 = cross(diff(V),diff(V,2));
>> nu = simple(cross(v1,tang)/(sqrt(dot(v1,v1))*sqrt(dot(tang,tang))))
 
nu =
  
[(-2*t-9*t^3)/(9*t^4+9*t^2+1)^(1/2)/(1+4*t^2+9*t^4)^(1/2),
 (1-9*t^4)/(9*t^4+9*t^2+1)^(1/2)/(1+4*t^2+9*t^4)^(1/2),
(6*t^3+3*t)/(9*t^4+9*t^2+1)^(1/2)/(1+4*t^2+9*t^4)^(1/2)]
 

Chapter 7 ■ Differentiation in one and Several Variables. Applications to Optimization

163

The unit binormal vector is the vector product of the tangent vector and the unit normal vector.
  
>> bu = simple(cross(tu,nu))
  
bu =
 
[3*t^2/(9*t^4+9*t^2+1)^(1/2),-3*t/(9*t^4+9*t^2+1)^(1/2),1/(9*t^4+9*t^2+1)^(1/2)]
 
The unit binormal vector can also be calculated via (v'^v ") / |v'^v" | as follows:
 
>> bu = simple(v1/sqrt(dot(v1,v1)))
  
bu =
 
[3*t^2/(9*t^4+9*t^2+1)^(1/2),-3*t/(9*t^4+9*t^2+1)^(1/2),1/(9*t^4+9*t^2+1)^(1/2)]
 
We have calculated the Frenet frame for a twisted cubic.

165

Chapter 8

Optimization of Functions of
Complex Variables

8.1 Complex Numbers
MATLAB implements a simple way to work with complex numbers in binary form a+bi or a+bj, representing the
imaginary unit by means of the symbol i or j. Note that it is not necessary to include the product symbol (asterisk)
before the imaginary unit, but if it is included, everything still works correctly. It is important, however, that spaces are
not introduced between the imaginary unit i and its coefficient.

Complex numbers can have symbolic or numeric real or imaginary parts. Operations are carried out with a
precision that is set by the command format. Thus, it is possible to work with complex numbers in exact rational
format via the command format rat.

The common arithmetical operations with complex numbers (sum, difference, product, division and
exponentiation) are carried out in the usual way. Examples are shown in Figure 8-1.

Chapter 8 ■ Optimization of Functions of Complex Variables

166

Obviously, as the real numbers are a subset of the complex numbers, any function of complex variables will also
be valid for real variables.

8.2 General Functions of a Complex Variable
MATLAB has a range of preset general functions of a complex variable, which of course will also be valid for real,
rational and integer variables. The following sections present the most important examples.

8.2.1 Trigonometric Functions of a Complex Variable
Below is a table summarizing the trigonometric functions of a complex variable and their inverses that are
incorporated in MATLAB, illustrated with examples.

Figure 8-1. 

Chapter 8 ■ Optimization of Functions of Complex Variables

167

Function Inverse

sin (z) sine

>> sin(5-6i)

ans =

-1 9343e + 002-5 7218e + 001i

asin (z) arc sine

>> asin(1-i)

ans =

0.6662 - 1.0613i

cos (z) cosine

>> cos (3 + 4i)

ans =

-27.0349 - 3.8512i

acos (z) arc cosine

>> acos (-i)

ans =

1.5708 + 0.8814i

tan (z) tangent

>> tan(pi/4i)

ans =

0 - 0.6558i

atan(z) and atan2(imag(z), real(z)) arc tangent

>> atan(-pi*i)

ans =

1.5708 - 0.3298i

csc (z) cosecant

>> csc(1-i)

ans =

0.6215 + 0.3039i

acsc (z) arc cosecant

>> acsc(2i)

ans =

0 - 0.4812i

sec (z) secant

>> sec(-i)

ans =

0.6481

asec (z) arc secant

>> asec(0.6481+0i)

ans =

0 + 0.9999i

cot (z) cotangent

>> cot(-j)

ans =

0 + 1.3130i

acot (z) arc cotangent

>> acot(1-6j)

ans =

0.0277 + 0.1635i

8.2.2 Hyperbolic Functions of a Complex Variable
Below is a table of hyperbolic functions of a complex variable and their inverses that are incorporated in MATLAB,
illustrated with examples.

Function Inverse

sinh(z) hyperbolic sine

>> sinh(1+i)

ans =

0.6350 + 1.2985i

asinh(z) arc hyperbolic sine

>> asinh(0.6350 + 1.2985i)

ans =

1.0000 + 1.0000i

cosh(z) hyperbolic cosine

>> cosh(1-i)

ans =

0.8337 0.9889i

acosh(z) arc hyperbolic cosine

>> acosh(0.8337 - 0.9889i)

ans =

1.0000 1.0000i

(continued)

Chapter 8 ■ Optimization of Functions of Complex Variables

168

Function Inverse

tanh(z) hyperbolic tangent

>> tanh(3-5i)

ans =

1.0042 + 0.0027i

atanh(z) arc hyperbolic tangent

>> atanh(3-41)

ans =

-0.0263 - 1.5708i

csch(z) hyperbolic cosecant

>> csch(i)

ans =

0 - 1.1884i

acsch (z) arc hyperbolic cosecant

>> acsch(- 1.1884i)

ans =

0 + 1.0000i

sech(z) hyperbolic secant

>> sech(i^i)

ans =

0.9788

asech(z) arc hyperbolic secant

>> asech(5-0i)

ans =

0 + 1.3694i

coth(z) hyperbolic cotangent

>> coth(9+i)

ans =

1.0000 0.0000i

acoth(z) arc hyperbolic cotangent

>> acoth(1-i)

ans =

0.4024 + 0.5536i

8.2.3 Exponential and Logarithmic Functions of a Complex Variable
Below is a table summarizing the exponential and logarithmic functions that are incorporated in MATLAB, illustrated
with examples.

Function Meaning

exp (z) Exponential function to base e (e ^ x)

>> exp(1-i)

ans =

1.4687 - 2.2874i

log (x) Base e logarithm of x

>> log(1.4687-2.2874i)

ans =

1.0000 1.0000i

log10 (x) Base 10 logarithm of x

>> log10 (100 + 100i)

ans =

2.1505 + 0.3411i

(continued)

Chapter 8 ■ Optimization of Functions of Complex Variables

169

Function Meaning

log2 (x) Base 2 logarithm of x

>> log2(4-6i)

ans =

2.8502 1.4179i

pow2 (x) Base 2 power function (2^x)

>> pow2(2.8502-1.4179i)

ans =

3.9998. 6.0000i

sqrt (x) Square root of x

>> sqrt(1+i)

ans =

1.0987 + 0.4551i

8.3 Specific Functions of a Complex Variable
MATLAB incorporates a specific group of functions of a complex variable which allow you to work with moduli,
arguments, and real and imaginary parts. Among these features are the following:

Function Meaning

abs (z) The modulus (absolute value) of z

>> abs(12.425-8.263i)

ans =

14.9217

angle (z) The argument of z

>> angle(12.425-8.263i)

ans =

-0.5869

conj (z) The complex conjugate of z

>> conj(12.425-8.263i)

ans =

12.4250 + 8.2630i

real (z) The real part of z

>> real(12.425-8.263i)

ans =

12.4250

(continued)

Chapter 8 ■ Optimization of Functions of Complex Variables

170

Function Meaning

imag (z) The imaginary part of z

>> imag(12.425-8.263i)

ans =

-8.2630

floor (z) Applies the floor function to real(z) and imag(z)

>> floor(12.425-8.263i)

ans =

12.0000 9.0000i

ceil (z) Applies the ceiling function to real(z) and imag(z)

>> ceil(12.425-8.263i)

ans =

13.0000 8.0000i

round (z) Applies the round function to real(z) and imag(z)

>> round(12.425-8.263i)

ans =

12.0000 8.0000i

fix (z) Applies the fix function to real(z) and imag(z)

>> fix(12.425-8.263i)

ans =

12.0000 - 8.0000i

8.4 Basic Functions with Complex Vector Arguments
MATLAB enables you to work with functions of a complex matrix or vector. Of course, these functions are also valid
for real variables since the real numbers are included in the complex numbers. Below is a table summarizing the
functions of complex vector variables that are incorporated in MATLAB. Later, when the functions of complex matrix
variables are tabulated, we will observe that all of them are also valid for vector variables, a vector being a particular
case of a matrix.

Chapter 8 ■ Optimization of Functions of Complex Variables

171

max (V) The maximum component of V. (max is calculated for complex vectors as the complex number
with the largest complex modulus (magnitude), computed with max(abs(V)). Then it computes
the largest phase angle with max(angle(V)), if necessary.)

>> max([1-i 1+i 3-5i 6i])

ans =

0 + 6.0000i

>> max([1, 0, -23, 12, 16])

ans =

16

min (V) The minimum component of V. (min is calculated for complex vectors as the complex number with
the smallest complex modulus (magnitude), computed with min(abs(V)). Then it computes the
smallest phase angle with min(angle(V)), if necessary.)

>> min([1-i 1+i 3-5i 6i])

ans =

1.0 - 1.0000i

>> min([1, 0, -23, 12, 16])

ans =

-23

mean (V) Average of the components of V.

>> mean([1-i 1+i 3-5i 6i])

ans =

1.2500 + 0.2500i

>> mean([1, 0, -23, 12, 16])

ans =

1.2000

median (V) Median of the components of V.

>> median([1-i 1+i 3-5i 6i])

ans =

2.0000 2.0000i

>> median([1, 0, -23, 12, 16])

ans =

1

(continued)

Chapter 8 ■ Optimization of Functions of Complex Variables

172

std (V) Standard deviation of the components of V.

>> std([1-i 1+i 3-5i 6i])

ans =

4.7434

>> std([1, 0, -23, 12, 16])

ans =

15.1888

sort (V) Sorts the components of V in ascending order. For complex entries the order is by absolute value
and argument.

>> sort([1-i 1+i 3-5i 6i])

ans =

Columns 1 through 2

1.0000 - 1.0000i 1.0000 + 1.0000i

Columns 3 through 4

3.0000 - 5.0000i 0 + 6.0000i

>> sort([1, 0, -23, 12, 16])

ans =

-23 0 1 12 16

sum (V) Returns the sum of the components of V.

>> sum([1-i 1+i 3-5i 6i])

ans =

5.0000 + 1.0000i

>> sum([1, 0, -23, 12, 16])

ans =

6

prod (V) Returns the product of the components of V, so, for example,n! = prod(1:n).

>> prod([1-i 1+i 3-5i 6i])

ans =

60.0000 + 36 0000i

>> prod([1, 0, -23, 12, 16])

ans =

0

(continued)

Chapter 8 ■ Optimization of Functions of Complex Variables

173

cumsum (V) Gives the cumulative sums of the components of V.

>> cumsum([1-i 1+i 3-5i 6i])

ans =

Columns 1 through 2

1.0000 - 1.0000i 2.0000

Columns 3 through 4

5.0000 5.0000i 5.0000 + 1.0000i

>> cumsum([1, 0, -23, 12, 16])

ans =

1 1-22 - 10-6

cumprod (V) Gives the cumulative products of the components of V.

>> cumprod([1-i 1+i 3-5i 6i])

ans =

Columns 1 through 2

1.0000 - 1.0000i 2.0000

Columns 3 through 4

6.0000 - 10.0000i 60.0000 + 36.0000i

>> cumprod([1, 0, -23, 12, 16])

ans =

1 0 0 0 0

diff (V) Gives the vector of first differences of V (Vt - V-t-1
).

>> diff([1-i 1+i 3-5i 6i])

ans =

0 + 2.0000i 2.0000 - 6.0000i -3.0000 + 11.0000i

>> diff([1, 0, -23, 12, 16])

ans =

-1-23 35 4

gradient (V) Gives the gradient of V.

>> gradient([1-i 1+i 3-5i 6i])

ans =

Columns 1 through 3

0 + 2.0000i 1.0000 - 2.0000i -0.5000 + 2.5000i

Column 4

-3.0000 + 11.0000i

>> gradient([1, 0, -23, 12, 16])

ans =

-1.0000 - 12.0000 6.0000 19.5000 4.0000

(continued)

Chapter 8 ■ Optimization of Functions of Complex Variables

174

del2 (V) Gives the Laplacian of V (5-point discrete).

>> del2([1-i 1+i 3-5i 6i])

ans =

Columns 1 through 3

2.2500 - 8.2500i 0.5000 - 2.0000i -1.2500 + 4.2500i

Column 4

-3.0000 + 10 5000i

>> del2([1, 0, -23, 12, 16])

ans =

-25.5000 - 5.5000 14.5000 - 7.7500 - 30.0000

fft (V) Gives the discrete Fourier transform of V.

>> fft([1-i 1+i 3-5i 6i])

ans =

Columns 1 through 3

5.0000 + 1.0000i -7.0000 + 3.0000i 3.0000 -13.0000i

Column 4

3.0000 + 5.0000i

>> fft([1, 0, -23, 12, 16])

ans =

Columns 1 through 3

6.0000 14.8435 +35.7894i -15.3435 -23.8824i

Columns 4 through 5

-15.3435 +23.8824i 14.8435 -35.7894i

fft2 (V) Gives the two-dimensional discrete Fourier transform of V.

>> fft2([1-i 1+i 3-5i 6i])

ans =

Columns 1 through 3

5.0000 + 1.0000i -7.0000 + 3.0000i 3.0000 -13.0000i

Column 4

3.0000 + 5.0000i

>> fft2([1, 0, -23, 12, 16])

ans =

Columns 1 through 3

6.0000 14.8435 +35.7894i -15.3435 -23.8824i

Columns 4 through 5

-15.3435 +23.8824i 14.8435 -35.7894i

(continued)

Chapter 8 ■ Optimization of Functions of Complex Variables

175

ifft (V) Gives the inverse discrete Fourier transform of V.

>> ifft([1-i 1+i 3-5i 6i])

ans =

Columns 1 through 3

1.2500 + 0.2500i 0.7500 + 1.2500i 0.7500 - 3.2500i

Column 4

-1.7500 + 0.7500i

>> ifft([1, 0, -23, 12, 16])

ans =

Columns 1 through 3

1.2000 2.9687 - 7.1579i -3.0687 + 4.7765i

Columns 4 through 5

-3.0687 - 4.7765i 2.9687 + 7.1579i

ifft2 (V) Gives the inverse two-dimensional discrete Fourier transform of V.

>> ifft2([1-i 1+i 3-5i 6i])

ans =

Columns 1 through 3

1.2500 + 0.2500i 0.7500 + 1.2500i 0.7500 - 3.2500i

Column 4

-1.7500 + 0.7500i

>> ifft2([1, 0, -23, 12, 16])

ans =

Columns 1 through 3

1.2000 2.9687 - 7.1579i -3.0687 + 4.7765i

Columns 4 through 5

-3.0687 - 4.7765i 2.9687 + 7.1579i

8.5 Basic Functions with Complex Matrix Arguments
The functions given in the above table also support complex matrices as arguments, in which case the result is a row
vector whose components are the results of applying the function to each column of the matrix. Let us not forget that
these functions are also valid for real variables, since the set of real numbers is a subset of the set of complex numbers.

Chapter 8 ■ Optimization of Functions of Complex Variables

176

max (Z) Returns a row vector indicating the maximum component of each column of the matrix Z.
(max is calculated for complex vectors V as the complex number with the largest complex modulus
(magnitude), computed with max(abs(V)). Then it computes the largest phase angle with
max(angle(V)), if necessary.)

>> Z = [1-i 3i 5;-1+i 0 2i;6-5i 8i -7]

Z =

  1.0000 - 1.0000i 0 + 3.0000i 5.0000

-1.0000 + 1.0000i 0 0 + 2.0000i

  6.0000 - 5.0000i 0 + 8.0000i -7.0000

>> Z = [1-i 3i 5-12i;-1+i 0 2i;6-5i 8i -7+6i]

Z =

  1.0000 - 1.0000i 0 + 3.0000i 5.0000 - 12.0000i

-1.0000 + 1.0000i 0 0 + 2.0000i

  6.0000 - 5.0000i 0 + 8.0000i -7.0000 + 6.0000i

>> max(Z)

ans =

6.0000 - 5.0000i 0 + 8.0000i 5.0000 - 12.0000i

>> Z1 = [1 3 5;-1 0 2;6 8 -7]

Z1 =

  1 3 5

-1 0 2

  6 8 -7

>> max(Z1)

ans =

6 8 5

min (Z) Returns a row vector indicating the minimum component of each column of the matrix Z.
(min is calculated for complex vectors V as the complex number with the smallest complex modulus
(magnitude), computed with min(abs(V)). Then it computes the smallest phase angle with
min(angle(V)), if necessary.)

>> min(Z)

ans =

1.0000 - 1.0000i 0 0 + 2.0000i

>> min(Z1)

ans =

-1 0 -7

(continued)

Chapter 8 ■ Optimization of Functions of Complex Variables

177

mean (Z) Returns a row vector indicating the mean of the components of each column of Z.

>> mean(Z)

ans =

2.0000 - 1.6667i 0 + 3.6667i -0.6667 - 1.3333i

>> mean(Z1)

ans =

2.0000 3.6667 0

median (Z) Returns a row vector indicating the median of the components of each column of Z.

>> median(Z)

ans =

-1.0000 + 1.0000i 0 + 3.0000i -7.0000 + 6.0000i

>> median(Z1)

ans =

1 3 2

std (Z) Returns a row vector indicating the standard deviation of the components of each column of Z.

>> std(Z)

ans =

4.7258 4.0415 11.2101

>> std(Z1)

ans =

3.6056 4.0415 6.2450

sort (Z) Sorts the components of the columns of Z in ascending order. For complex entries the order is by
absolute value and argument.

>> sort(Z)

ans =

  1.0000 - 1.0000i 0 0 + 2.0000i

-1.0000 + 1.0000i 0 + 3.0000i -7.0000 + 6.0000i

  6.0000 - 5.0000i 0 + 8.0000i 5.0000 - 12.0000i

>> sort(Z1)

ans =

-1 0 -7

  1 3 2

  6 8 5

(continued)

Chapter 8 ■ Optimization of Functions of Complex Variables

178

sum (Z) Returns a row vector indicating the sum of the components of each column of Z.

>> sum(Z)

ans =

6.0000 - 5.0000i 0 + 11.0000i -2.0000 - 4.0000i

>> sum(Z1)

ans =

6 11 0

prod (Z) Returns a row vector indicating the product of the components of each column of Z.

> prod(Z)

ans =

1.0e+002 *

0.1000 + 0.1200i 0 -2.2800 + 0.7400i

>> prod(Z1)

ans =

-6 0 -70

cumsum (Z) Returns a matrix indicating the cumulative sums of the elements in the columns of Z.

>> cumsum(Z)

ans =

1.0000 - 1.0000i 0 + 3.0000i 5.0000 - 12.0000i

    0 0 + 3.0000i 5.0000 - 10.0000i

6.0000 - 5.0000i 0 + 11.0000i -2.0000 - 4.0000i

>> cumsum(Z1)

ans =

1 3 5

0 3 7

6 11 0

cumprod(Z) Returns a matrix indicating the cumulative products of the elements in the columns of Z.

>> cumprod(Z)

ans =

1.0e+002 *

0.0100 - 0.0100i 0 + 0.0300i 0.0500 - 0.1200i

    0 + 0.0200i 0 0.2400 + 0.1000i

0.1000 + 0.1200i 0 -2.2800 + 0.7400i

>> cumprod(Z1)

ans =

  1 3 5

-1 0 10

-6 0 -70

(continued)

Chapter 8 ■ Optimization of Functions of Complex Variables

179

diff (Z) Returns the matrix of first differences of the components of the columns of Z.

>> diff(Z)

ans =

-2.0000 + 2.0000i 0 - 3.0000i -5.0000 + 14.0000i

  7.0000 - 6.0000i 0 + 8.0000i -7.0000 + 4.0000i

>> diff(Z1)

ans =

-2 -3 -3

  7 8 -9

gradient (Z) Returns the matrix of gradients for the columns of Z.

>> gradient(Z)

ans =

-1.0000 + 4.0000i 2.0000 - 5.5000i 5.0000 - 15.0000i

  1.0000 - 1.0000i 0.5000 + 0.5000i 0 + 2.0000i

-6.0000 + 13.0000i -6.5000 + 5.5000i -7.0000 - 2.0000i

>> gradient(Z1)

ans =

2.0000 2.0000 2.0000

1.0000 1.5000 2.0000

2.0000 -6.5000 -15.0000

del2 (Z) Returns the matrix indicating the Laplacian of the columns of Z (5-point discrete).

>> del2(Z)

ans =

3.7500 - 6.7500i 1.5000 - 2.0000i 1.0000 - 7.2500i

2.0000 - 1.2500i -0.2500 + 3.5000i -0.7500 - 1.7500i

2.0000 - 5.7500i -0.2500 - 1.0000i -0.7500 - 6.2500i

>> del2(Z1)

ans =

  2.2500 2.7500 -1.5000

  2.5000 3.0000 -1.2500

-2.0000 -1.5000 -5.7500

(continued)

Chapter 8 ■ Optimization of Functions of Complex Variables

180

fft (Z) Returns the matrix with discrete Fourier transforms of the columns of Z.

>> fft(Z)

ans =

  6.0000 - 5.0000i 0 + 11.0000i -2.0000 - 4.0000i

  3.6962 + 7.0622i -6.9282 - 1.0000i 5.0359 - 22.0622i

-6.6962 - 5.0622i 6.9282 - 1.0000i 11.9641 - 9.9378i

>> fft(Z1)

ans =

  6.0000 11.0000 0

-1.5000 + 6.0622i -1.0000 + 6.9282i 7.5000 - 7.7942i

-1.5000 - 6.0622i -1.0000 - 6.9282i 7.5000 + 7.7942i

fft2 (Z) Returns the matrix with the two-dimensional discrete Fourier transforms of the columns of the
matrix Z.

>> fft2(Z)

ans =

  4.0000 + 2.0000i 19.9904 - 10.2321i -5.9904 - 6.7679i

  1.8038 - 16.0000i 22.8827 + 28.9545i -13.5981 + 8.2321i

12.1962 - 16.0000i -8.4019 + 4.7679i -23.8827 - 3.9545i

>> fft2(Z1)

ans =

17.0000 0.5000 - 9.5263i 0.5000 + 9.5263i

  5.0000 + 5.1962i 8.0000 + 13.8564i -17.5000 - 0.8660i

  5.0000 - 5.1962i -17.5000 + 0.8660i 8.0000 - 13.8564i

ifft (Z) Returns the matrix with the inverse inverse discrete Fourier transform of the columns of the
matrix Z.

>> ifft(Z)

ans =

  2.0000 - 1.6667i 0 + 3.6667i -0.6667 - 1.3333i

-2.2321 - 1.6874i 2.3094 - 0.3333i 3.9880 - 3.3126i

  1.2321 + 2.3541i -2.3094 - 0.3333i 1.6786 - 7.3541i

>> ifft(Z1)

ans =

  2.0000 3.6667 0

-0.5000 - 2.0207i -0.3333 - 2.3094i 2.5000 + 2.5981i

-0.5000 + 2.0207i -0.3333 + 2.3094i 2.5000 - 2.5981i

(continued)

Chapter 8 ■ Optimization of Functions of Complex Variables

181

ifft2 (Z) Returns the matrix with the inverse two-dimensional discrete Fourier transform of the columns of Z.

>> ifft2(Z)

ans =

0.4444 + 0.2222i -0.6656 - 0.7520i 2.2212 - 1.1369i

1.3551 - 1.7778i -2.6536 - 0.4394i -0.9335 + 0.5298i

0.2004 - 1.7778i -1.5109 + 0.9147i 2.5425 + 3.2172i

>> ifft2(Z1)

ans =

1.8889 0.0556 + 1.0585i 0.0556 - 1.0585i

0.5556 - 0.5774i 0.8889 - 1.5396i -1.9444 + 0.0962i

0.5556 + 0.5774i -1.9444 - 0.0962i 0.8889 + 1.5396i

8.6 General Functions with Complex Matrix Arguments
MATLAB incorporates a broad group of hyperbolic, trigonometric, exponential and logarithmic functions that support
a complex matrix as an argument. Obviously, all these functions also accept a complex vector as the argument, since a
vector is a particular case of matrix. All functions are applied elementwise in the matrix.

8.6.1 Trigonometric Functions of a Complex Matrix Variable
Below is a table summarizing the trigonometric functions of a complex variable and their inverses which are
incorporated in MATLAB, illustrated with examples. All the examples use as arguments the matrices Z and Z1
introduced at the beginning of the table in the description of the sine function.

Chapter 8 ■ Optimization of Functions of Complex Variables

182

Direct Trigonometric Functions

sin(Z) sine function

>> Z = [1-i, 1+i, 2i;3-6i, 2+4i, -i;i,2i,3i]

Z =

1.0000 - 1.0000i 1.0000 + 1.0000i 0 + 2.0000i

3.0000 - 6.0000i 2.0000 + 4.0000i 0 - 1.0000i

    0 + 1.0000i 0 + 2.0000i 0 + 3.0000i

>> Z1 = [1,1,2;3,2,-1;1,2,3]

Z1 =

1 1 2

3 2 -1

1 2 3

>> sin(Z)

ans =

1.0e+002 *

0.0130 - 0.0063i 0.0130 + 0.0063i 0 + 0.0363i

0.2847 + 1.9969i 0.2483 - 0.1136i 0 - 0.0118i

    0 + 0.0118i 0 + 0.0363i 0 + 0.1002i

>> sin(Z1)

ans =

0.8415 0.8415 0.9093

0.1411 0.9093 -0.8415

0.8415 0.9093 0.1411

cos (Z) cosine function

>> cos(Z)

ans =

1.0e+002 *

  0.0083 + 0.0099i 0.0083 - 0.0099i 0.0376

-1.9970 + 0.2847i -0.1136 - 0.2481i 0.0154

  0.0154 0.0376 0.1007

>> cos(Z1)

ans =

  0.5403 0.5403 -0.4161

-0.9900 -0.4161 0.5403

  0.5403 -0.4161 -0.9900

(continued)

Chapter 8 ■ Optimization of Functions of Complex Variables

183

Direct Trigonometric Functions

tan (Z) tangent function

>> tan(Z)

ans =

  0.2718 - 1.0839i 0.2718 + 1.0839i 0 + 0.9640i

-0.0000 - 1.0000i -0.0005 + 1.0004i 0 - 0.7616i

 0 + 0.7616i 0 + 0.9640i 0 + 0.9951i

>> tan(Z1)

ans =

  1.5574 1.5574 -2.1850

-0.1425 -2.1850 -1.5574

  1.5574 -2.1850 -0.1425

csc (Z) cosecant function

>> csc(Z)

ans =

0.6215 + 0.3039i 0.6215 - 0.3039i 0 - 0.2757i

0.0007 - 0.0049i 0.0333 + 0.0152i 0 + 0.8509i

    0 - 0.8509i 0 - 0.2757i 0 - 0.0998i

>> csc(Z1)

ans =

1.1884 1.1884 1.0998

7.0862 1.0998 -1.1884

1.1884 1.0998 7.0862

sec (Z) secant function

>> sec(Z)

ans =

  0.4983 - 0.5911i 0.4983 + 0.5911i 0.2658

-0.0049 - 0.0007i -0.0153 + 0.0333i 0.6481

  0.6481 0.2658 0.0993

>> sec(Z1)

ans =

  1.8508 1.8508 -2.4030

-1.0101 -2.4030 1.8508

  1.8508 -2.4030 -1.0101

(continued)

Chapter 8 ■ Optimization of Functions of Complex Variables

184

Direct Trigonometric Functions

cot (Z) cotangent function

>> cot(Z)

ans =

  0.2176 + 0.8680i 0.2176 - 0.8680i 0 - 1.0373i

-0.0000 + 1.0000i -0.0005 - 0.9996i 0 + 1.3130i

    0 - 1.3130i 0 - 1.0373i 0 - 1.0050i

>> cot(Z1)

ans =

  0.6421 0.6421 -0.4577

-7.0153 -0.4577 -0.6421

  0.6421 -0.4577 -7.0153

Inverse Trigonometric Functions

asin (Z) arc sine function

>> asin(Z)

ans =

0.6662 - 1.0613i 0.6662 + 1.0613i 0 + 1.4436i

0.4592 - 2.5998i 0.4539 + 2.1986i 0 - 0.8814i

    0 + 0.8814i 0 + 1.4436i 0 + 1.8184i

>> asin(Z1)

ans =

1.5708 1.5708 1.5708 - 1.3170i

1.5708 - 1.7627i 1.5708 - 1.3170i -1.5708

1.5708 1.5708 - 1.3170i 1.5708 - 1.7627i

acos (Z) arc cosine function

>> acos(Z)

ans =

0.9046 + 1.0613i 0.9046 - 1.0613i 1.5708 - 1.4436i

1.1115 + 2.5998i 1.1169 - 2.1986i 1.5708 + 0.8814i

1.5708 - 0.8814i 1.5708 - 1.4436i 1.5708 - 1.8184i

>> acos(Z1)

ans =

0 0 0 + 1.3170i

0 + 1.7627i 0 + 1.3170i 3.1416

0 0 + 1.3170i 0 + 1.7627i

(continued)

Chapter 8 ■ Optimization of Functions of Complex Variables

185

Inverse Trigonometric Functions

atan(Z) and atan2 (real(Z), imag(Z)) arc tangent function

>> atan(Z)

ans =

1.0172 - 0.4024i 1.0172 + 0.4024i -1.5708 + 0.5493i

1.5030 - 0.1335i 1.4670 + 0.2006i 0 - Infi

    0 + Infi -1.5708 + 0.5493i -1.5708 + 0.3466i

>> atan(Z1)

ans =

0.7854 0.7854 1.1071

1.2490 1.1071 -0.7854

0.7854 1.1071 1.2490

acsc (Z) arc cosecant function

>> acsc(Z)

ans =

0.4523 + 0.5306i 0.4523 - 0.5306i 0 - 0.4812i

0.0661 + 0.1332i 0.0982 - 0.1996i 0 + 0.8814i

    0 - 0.8814i 0 - 0.4812i 0 - 0.3275i

>> acsc(Z1)

ans =

1.5708 1.5708 0.5236

0.3398 0.5236 -1.5708

1.5708 0.5236 0.3398

asec (Z) arc secant function

>> asec(Z)

ans =

1.1185 - 0.5306i 1.1185 + 0.5306i 1.5708 + 0.4812i

1.5047 - 0.1332i 1.4726 + 0.1996i 1.5708 - 0.8814i

1.5708 + 0.8814i 1.5708 + 0.4812i 1.5708 + 0.3275i

>> asec(Z1)

ans =

    0 0 1.0472

1.2310 1.0472 3.1416

    0 1.0472 1.2310

(continued)

Chapter 8 ■ Optimization of Functions of Complex Variables

186

Inverse Trigonometric Functions

acot (Z) arc cotangent function

>> acot(Z)

ans =

0.5536 + 0.4024i 0.5536 - 0.4024i 0 - 0.5493i

0.0678 + 0.1335i 0.1037 - 0.2006i 0 + Infi

    0 - Infi 0 - 0.5493i 0 - 0.3466i

>> acot(Z1)

ans =

0.7854 0.7854 0.4636

0.3218 0.4636 -0.7854

0.7854 0.4636 0.3218

8.6.2 Hyperbolic Functions of a Complex Matrix Variable
Below is a table summarizing the hyperbolic functions of complex matrix variables and their inverses which are
incorporated in MATLAB, illustrated with examples.

Direct Hyperbolic Functions

sinh (Z) hyperbolic sine function

>> sinh(Z)

ans =

0.6350 - 1.2985i 0.6350 + 1.2985i 0 + 0.9093i

9.6189 + 2.8131i -2.3707 - 2.8472i 0 - 0.8415i

    0 + 0.8415i 0 + 0.9093i 0 + 0.1411i

>> sinh(Z1)

ans =

  1.1752 1.1752 3.6269

10.0179 3.6269 -1.1752

  1.1752 3.6269 10.0179

cosh (Z) hyperbolic cosine function

>> cosh(Z)

ans =

0.8337 - 0.9889i 0.8337 + 0.9889i -0.4161

9.6667 + 2.7991i -2.4591 - 2.7448i 0.5403

0.5403 -0.4161 -0.9900

>> cosh(Z1)

ans =

  1.5431 1.5431 3.7622

10.0677 3.7622 1.5431

  1.5431 3.7622 10.0677

(continued)

Chapter 8 ■ Optimization of Functions of Complex Variables

187

Direct Hyperbolic Functions

tanh (Z) hyperbolic tangent function

>> tanh(Z)

ans =

1.0839 - 0.2718i 1.0839 + 0.2718i 0 - 2.1850i

0.9958 + 0.0026i 1.0047 + 0.0364i 0 - 1.5574i

    0 + 1.5574i 0 - 2.1850i 0 - 0.1425i

>> tanh(Z1)

ans =

0.7616 0.7616 0.9640

0.9951 0.9640 -0.7616

0.7616 0.9640 0.9951

csch (z) hyperbolic cosecant function

>> csch(Z)

ans =

0.3039 + 0.6215i 0.3039 - 0.6215i 0 - 1.0998i

0.0958 - 0.0280i -0.1727 + 0.2074i 0 + 1.1884i

    0 - 1.1884i 0 - 1.0998i 0 - 7.0862i

>> csch(Z1)

ans =

0.8509 0.8509 0.2757

0.0998 0.2757 -0.8509

0.8509 0.2757 0.0998

sech (Z) hyperbolic secant function

>> sech(Z)

ans =

0.4983 + 0.5911i 0.4983 - 0.5911i -2.4030

0.0954 - 0.0276i -0.1811 + 0.2021i 1.8508

1.8508 -2.4030 -1.0101

>> sech(Z1)

ans =

0.6481 0.6481 0.2658

0.0993 0.2658 0.6481

0.6481 0.2658 0.0993

(continued)

Chapter 8 ■ Optimization of Functions of Complex Variables

188

Direct Hyperbolic Functions

coth (Z) hyperbolic cotangent function

>> coth(Z)

ans =

0.8680 + 0.2176i 0.8680 - 0.2176i 0 + 0.4577i

1.0042 - 0.0027i 0.9940 - 0.0360i 0 + 0.6421i

    0 - 0.6421i 0 + 0.4577i 0 + 7.0153i

>> coth(Z1)

ans =

1.3130 1.3130 1.0373

1.0050 1.0373 -1.3130

1.3130 1.0373 1.0050

Inverse Hyperbolic Functions

asinh (Z) hyperbolic arc sine function

>> asinh(Z)

ans =

1.0613 - 0.6662i 1.0613 + 0.6662i 1.3170 + 1.5708i

2.5932 - 1.1027i 2.1836 + 1.0969i 0 - 1.5708i

    0 + 1.5708i 1.3170 + 1.5708i 1.7627 + 1.5708i

>> asinh(Z1)

ans =

0.8814 0.8814 1.4436

1.8184 1.4436 -0.8814

0.8814 1.4436 1.8184

acosh (Z) hyperbolic arc cosine function

>> acosh(Z)

ans =

1.0613 - 0.9046i 1.0613 + 0.9046i 1.4436 + 1.5708i

2.5998 - 1.1115i 2.1986 + 1.1169i 0.8814 - 1.5708i

0.8814 + 1.5708i 1.4436 + 1.5708i 1.8184 + 1.5708i

>> acosh(Z1)

ans =

    0 0 1.3170

1.7627 1.3170 0 + 3.1416i

    0 1.3170 1.7627

(continued)

Chapter 8 ■ Optimization of Functions of Complex Variables

189

Inverse Hyperbolic Functions

atanh (Z) hyperbolic arc tangent function

>> atanh(Z)

ans =

0.4024 - 1.0172i 0.4024 + 1.0172i 0 + 1.1071i

0.0656 - 1.4377i 0.0964 + 1.3715i 0 - 0.7854i

    0 + 0.7854i 0 + 1.1071i 0 + 1.2490i

>> atanh(Z1)

ans =

    inf inf 0.5493 + 1.5708i

0.3466 + 1.5708i 0.5493 + 1.5708i -inf

    inf 0.5493 + 1.5708i 0.3466 + 1.5708i

acsch (Z) hyperbolic arc cosecant function

>> acsch(Z)

ans =

0.5306 + 0.4523i 0.5306 - 0.4523i 0 - 0.5236i

0.0672 + 0.1334i 0.1019 - 0.2003i 0 + 1.5708i

    0 - 1.5708i 0 - 0.5236i 0 - 0.3398i

>> acsch(Z1)

ans =

0.8814 0.8814 0.4812

0.3275 0.4812 -0.8814

0.8814 0.4812 0.3275

asech (Z) hyperbolic arc secant function

>> asech(Z)

ans =

0.5306 + 1.1185i 0.5306 - 1.1185i 0.4812 - 1.5708i

0.1332 + 1.5047i 0.1996 - 1.4726i 0.8814 + 1.5708i

0.8814 - 1.5708i 0.4812 - 1.5708i 0.3275 - 1.5708i

>> asech(Z1)

ans =

0 0 0 + 1.0472i

0 + 1.2310i 0 + 1.0472i 0 + 3.1416i

0 0 + 1.0472i 0 + 1.2310i

(continued)

Chapter 8 ■ Optimization of Functions of Complex Variables

190

Inverse Hyperbolic Functions

acoth (Z) hyperbolic arc cotangent function

>> acoth(Z)

ans =

0.4024 + 0.5536i 0.4024 - 0.5536i 0 - 0.4636i

0.0656 + 0.1331i 0.0964 - 0.1993i 0 + 0.7854i

    0 - 0.7854i 0 - 0.4636i 0 - 0.3218i

>> acoth(Z1)

ans =

    Inf Inf 0.5493

0.3466 0.5493 -Inf

    Inf 0.5493 0.3466

8.6.3 Exponential and Logarithmic Functions of a Complex Matrix Variable
Below is a table summarizing the exponential and logarithmic functions which are incorporated in MATLAB,
illustrated with examples. The matrices Z1 and Z are the same as those in the previous examples.

Function Meaning

exp (Z) Base e exponential function (e ^ x)

>> exp(Z)

ans =

  1.4687 - 2.2874i 1.4687 + 2.2874i -0.4161 + 0.9093i

19.2855 + 5.6122i -4.8298 - 5.5921i 0.5403 - 0.8415i

  0.5403 + 0.8415i -0.4161 + 0.9093i -0.9900 + 0.1411i

>> exp(Z1)

ans =

  2.7183 2.7183 7.3891

20.0855 7.3891 0.3679

  2.7183 7.3891 20.0855

log (Z) Base e logarithm of Z.

>> log(Z)

ans =

0.3466 - 0.7854i 0.3466 + 0.7854i 0.6931 + 1.5708i

1.9033 - 1.1071i 1.4979 + 1.1071i 0 - 1.5708i

    0 + 1.5708i 0.6931 + 1.5708i 1.0986 + 1.5708i

>> log(Z1)

ans =

    0 0 0.6931

1.0986 0.6931 0 + 3.1416i

    0 0.6931 1.0986

(continued)

Chapter 8 ■ Optimization of Functions of Complex Variables

191

Function Meaning

log10 (Z) Base 10 logarithm of Z.

>> log10(Z)

ans =

0.1505 - 0.3411i 0.1505 + 0.3411i 0.3010 + 0.6822i

0.8266 - 0.4808i 0.6505 + 0.4808i 0 - 0.6822i

    0 + 0.6822i 0.3010 + 0.6822i 0.4771 + 0.6822i

>> log10(Z1)

ans =

    0 0 0.3010

0.4771 0.3010 0 + 1.3644i

    0 0.3010 0.4771

log2 (Z) Base 2 logarithm of Z.

>> log2(Z)

ans =

0.5000 - 1.1331i 0.5000 + 1.1331i 1.0000 + 2.2662i

2.7459 - 1.5973i 2.1610 + 1.5973i 0 - 2.2662i

    0 + 2.2662i 1.0000 + 2.2662i 1.5850 + 2.2662i

>> log2(Z1)

ans =

    0 0 1.0000

1.5850 1.0000 0 + 4.5324i

    0 1.0000 1.5850

pow2 (Z) Base 2 exponential function (2^Z).

>> pow2(Z)

ans =

  1.5385 - 1.2779i 1.5385 + 1.2779i 0.1835 + 0.9830i

-4.2054 + 6.8055i -3.7307 + 1.4427i 0.7692 - 0.6390i

  0.7692 + 0.6390i 0.1835 + 0.9830i -0.4870 + 0.8734i

>> pow2(Z1)

ans =

2.0000 2.0000 4.0000

8.0000 4.0000 0.5000

2.0000 4.0000 8.0000

(continued)

Chapter 8 ■ Optimization of Functions of Complex Variables

192

Function Meaning

sqrt (Z) Square root of Z.

>> sqrt(Z)

ans =

1.0987 - 0.4551i 1.0987 + 0.4551i 1.0000 + 1.0000i

2.2032 - 1.3617i 1.7989 + 1.1118i 0.7071 - 0.7071i

0.7071 + 0.7071i 1.0000 + 1.0000i 1.2247 + 1.2247i

>> sqrt(Z1)

ans =

1.0000 1.0000 1.4142

1.7321 1.4142 0 + 1.0000i

1.0000 1.4142 1.7321

8.6.4 Specific Functions of a Complex Matrix Variable
MATLAB incorporates a specific group of functions of a complex variable allowing you to work with moduli,
arguments, and real and imaginary parts. Among these functions are the following:

Function Meaning

abs (Z) The complex modulus (absolute value).

>> abs(Z)

ans =

1.4142 1.4142 2.0000

6.7082 4.4721 1.0000

1.0000 2.0000 3.0000

>> abs(Z1)

ans =

1 1 2

3-2-1

1 2 3

angle (Z) Argument function.

>> angle(Z)

ans =

-0.7854 0.7854 1.5708

-1.1071 1.1071 -1.5708

  1.5708 1.5708 1.5708

>> angle(Z1)

ans =

0 0 0

0 0 3.1416

0 0 0

(continued)

Chapter 8 ■ Optimization of Functions of Complex Variables

193

Function Meaning

conj (Z) Complex conjugate.

>> conj(Z)

ans =

1.0000 + 1.0000i 1.0000 - 1.0000i 0 - 2.0000i

3.0000 + 6.0000i 2.0000 - 4.0000i 0 + 1.0000i

    0 - 1.0000i 0 - 2.0000i 0 - 3.0000i

>> conj(Z1)

ans =

1 1 2

2 -3 -1

1 2 3

real (Z) Real part.

>> real(Z)

ans =

1 1 0

3 2 0

0 0 0

>> real(Z1)

ans =

1 1 2

2 -3 -1

1 2 3

imag (Z) Imaginary part.

>> imag(Z)

ans =

-1 1 2

-4 6 -1

  1 2 3

>> imag(Z1)

ans =

0 0 0

0 0 0

0 0 0

(continued)

Chapter 8 ■ Optimization of Functions of Complex Variables

194

Function Meaning

floor (Z) Floor function applied to real and imaginary parts.

>> floor(12.357*Z)

ans =

12.0000 -13.0000i 12.0000 +12.0000i 0 +24.0000i

37.0000 -75.0000i 24.0000 +49.0000i 0 -13.0000i

    0 +12.0000i 0 +24.0000i 0 +37.0000i

>> floor(12.357*Z1)

ans =

12 12 24

37 24 -13

12 -24 -37

ceil (Z) Ceiling function applied to real and imaginary parts.

>> ceil(12.357*Z)

ans =

13.0000 -12.0000i 13.0000 +13.0000i 0 +25.0000i

38.0000 -74.0000i 25.0000 +50.0000i 0 -12.0000i

    0 +13.0000i 0 +25.0000i 0 +38.0000i

>> ceil(12.357*Z1)

ans =

13 13 25

38 25 -12

13 25 38

round (Z) Round function applied to real and imaginary parts.

>> round(12.357*Z)

ans =

12.0000 -12.0000i 12.0000 +12.0000i 0 +25.0000i

37.0000 -74.0000i 25.0000 +49.0000i 0 -12.0000i

    0 +12.0000i 0 +25.0000i 0 +37.0000i

>> round(12.357*Z1)

ans =

12 -12 -25

37 25 -12

12 25 37

(continued)

Chapter 8 ■ Optimization of Functions of Complex Variables

195

Function Meaning

fix (Z) Fix applied to real and imaginary parts.

>> fix(12.357*Z)

ans =

12.0000 -12.0000i 12.0000 +12.0000i 0 +24.0000i

37.0000 -74.0000i 24.0000 +49.0000i 0 -12.0000i

    0 +12.0000i 0 +24.0000i 0 +37.0000i

>> fix(12.357*Z1)

ans =

12 12 24

24 -37 12

12 -24 -37

8.7 Matrix Operations with Real and Complex Variables
MATLAB includes the usual matrix operations of sum, difference, product, exponentiation and inversion. Obviously
all these operations will also be valid for real matrices. The following table summarizes those operations that are valid
both for numerical and algebraic real and complex matrices.

Chapter 8 ■ Optimization of Functions of Complex Variables

196

A + B Sum of matrices.

>> A = [1+i, 1-i, 2i; -i,-3i,6-5i; 2+3i, 2-3i, i]

A =

1.0000 + 1.0000i 1.0000 - 1.0000i 0 + 2.0000i

    0 - 1.0000i 0 - 3.0000i 6.0000 - 5.0000i

2.0000 + 3.0000i 2.0000 - 3.0000i 0 + 1.0000i

>> B = [i, -i, 2i; 1-i,7-3i,2-5i;8-6i, 5-i, 1+i]

B =

    0 + 1.0000i 0 - 1.0000i 0 + 2.0000i

1.0000 - 1.0000i 7.0000 - 3.0000i 2.0000 - 5.0000i

8.0000 - 6.0000i 5.0000 - 1.0000i 1.0000 + 1.0000i

>> A1 = [1 6 2;3 5 0; 2 4 -1]

A1 =

1 6 2

3 5 0

2 4 -1

>> B1 = [-3 -6 1;-3 -5 2; 12 14 -10]

B1 =

-3 -6 1

-3 -5 2

12 14 -10

>> A+B

ans =

  1.0000 + 2.0000i 1.0000 - 2.0000i 0 + 4.0000i

  1.0000 - 2.0000i 7.0000 - 6.0000i 8.0000 - 10.0000i

10.0000 - 3.0000i 7.0000 - 4.0000i 1.0000 + 2.0000i

>> A1+B1

ans =

-2 0 3

  0 0 2

14 18 -11

(continued)

Chapter 8 ■ Optimization of Functions of Complex Variables

197

A-B Difference of matrices.

>> A-B

ans =

  1.0000 1.0000 0

-1.0000 -7.0000 4.0000

-6.0000 + 9.0000i -3.0000 - 2.0000i -1.0000

>> A1-B1

ans =

   4 12 1

   6 10 -2

-10 -10 9

A * B Product of matrices.

>> A * B

ans =

11.0000 + 15.0000i 7.0000 - 1.0000i - 7.0000 - 3.0000i

16.0000 - 79.0000i 15.0000 - 52.0000i - 2.0000 - 5.0000i

  2.0000 + 5.0000i 9.0000 - 24.0000i - 18.0000 - 11.0000i

>> A1*B1

ans =

 3 -8 -7

-24 -43 13

-30 -46 20

A^n nth power of the matrix A.

>> A^3

ans =

1.0e+002 *

0.1000 - 0.3400i -0.3200 - 0.1200i 0.3400 - 0.3600i

0.0900 - 0.0300i -1.0700 + 0.2100i -2.2500 - 0.6700i

0.3700 - 0.7900i -1.0300 - 0.0300i -0.0700 - 0.3700i

>> A1^3

ans =

155 358 46

159 347 30

106 232 19

ans =

Columns 1 through 2

1.0000 - 1.0000i 2.0000

Columns 3 through 4

6.0000 - 10.0000i 60.0000 + 36.0000i

>> cumprod([1, 0, -23, 12, 16])

ans =

1 0 0 0 0

(continued)

Chapter 8 ■ Optimization of Functions of Complex Variables

198

P^A Scalar p raised to the power of the matrix A.

>> 3^A

ans =

   0.0159 - 1.2801i -0.5297 + 2.8779i -1.9855 + 3.0796i

-10.3372 + 0.4829i 17.0229 + 12.9445i 14.7327 + 20.1633i

  -5.0438 + 0.2388i 7.0696 + 6.9611i 5.7189 + 9.5696i

>> 3^A1

ans =

1.0e+003 *

2.2230 4.9342 0.4889

2.1519 4.7769 0.4728

1.4346 3.1844 0.3156

A' Transpose of the matrix A.

>> A'

ans =

1.0000 - 1.0000i 0 + 1.0000i 2.0000 - 3.0000i

1.0000 + 1.0000i 0 + 3.0000i 2.0000 + 3.0000i

    0 - 2.0000i 6.0000 + 5.0000i 0 - 1.0000i

>> A1'

ans =

1 3 2

6 5 4

2 0 -1

(continued)

Chapter 8 ■ Optimization of Functions of Complex Variables

199

A^-1 Inverse of A.

>> A^-1

ans =

-2.5000 + 2.0000i -0.0500 + 0.6500i 0.8500 - 1.0500i

  0.5000 + 3.0000i 0.5500 + 0.3500i -0.3500 - 0.9500i

-1.0000 - 1.0000i -0.2000 + 0.1000i 0.4000 + 0.3000i

>> A1^-1

ans =

-0.2941 0.8235 -0.5882

  0.1765 -0.2941 0.3529

  0.1176 0.4706 -0.7647

>> A*A^-1

ans =

  1.0000 0.0000 - 0.0000i -0.0000 + 0.0000i

-0.0000 - 0.0000i 1.0000 + 0.0000i 0.0000

  0.0000 + 0.0000i 0.0000 1.0000 + 0.0000i

>> A1*A1^-1

ans =

  1.0000 -0.0000 0

-0.0000 1.0000 0

-0.0000 -0.0000 1.0000

A\B If A is square A\B= (A-1) * B and if A is not square A\B is the solution in the sense of
least-squares of the system AX = B.

>> A\B

ans =

  -0.9000 -15.3000i 6.8000 + 1.1000i 1.0500 - 3.6500i

-10.6000 -5.2000i 5.2000 - 4.1000i -2.5500 - 2.3500i

   5.9000   0.7000i 0.2000 + 3.4000i 2.2000 - 0.1000i

>> A1\B1

ans =

  -8.6471 -10.5882 7.2353

   4.5882 5.3529 -3.9412

-10.9412 -13.7647 8.7059

(continued)

Chapter 8 ■ Optimization of Functions of Complex Variables

200

B/A Equivalent to A¢\B¢
>> B/A

ans =

  3.0000 - 5.0000i -0.5000 - 1.0000i -0.5000 + 2.0000i

  5.0000 + 27.0000i 5.6000 + 2.7000i -3.2000 - 8.9000i

-2.5000 + 43.5000i 6.3000 + 6.6000i -2.1000 - 17.2000i

>> A'\B'

ans =

  3.0000 + 5.0000i 5.0000 - 27.0000i -2.5000 - 43.5000i

-0.5000 + 1.0000i 5.6000 - 2.7000i 6.3000 - 6.6000i

-0.5000 - 2.0000i -3.2000 + 8.9000i -2.1000 + 17.2000i

>> B1/A1

ans =

-0.0588 -0.2353 -1.1176

  0.2353 -0.0588 -1.5294

-2.2353 1.0588 5.5294

>> A1'\B1'

ans =

-0.0588 0.2353 -2.2353

-0.2353 -0.0588 1.0588

-1.1176 -1.5294 5.5294

EXERCISE 8-1

Given the complex numbers z1= 1-i, and z2= 5i, calculate: z1
3 z1

2/z2
4, z1

1/2, z2
3/2, ln(z1+z2), sin(z1-z2), and tanh (z1/z2).

>> Z1 = 1-i
 
Z1 =
 
1.0000 - 1.0000i
 
>> Z2 = 5i
 
Z2 =
 
0 + 5.0000i
 
>> Z1^3
 
ans =
 
-2.0000 - 2.0000i
 

Chapter 8 ■ Optimization of Functions of Complex Variables

201

>> Z1^2/Z2^4
 
ans =
 
0 - 0.0032i
 
>> sqrt(Z1)
 
ans =
 
1.0987 - 0.4551i
 
>> sqrt(Z2^3)

ans =
 
7.9057 - 7.9057i
 
>> log(Z1+Z2)
 
ans =
 
1.4166 + 1.3258i
 
>> sin(Z1-Z2)
 
ans =
 
1.6974e+002 -1.0899e+002i
 
>> tanh(Z1/Z2)
 
ans =
 
-0.2052 - 0.1945i

EXERCISE 8-2

Perform the following operations with complex numbers:

i i

i
i i i i ii i i i

8 8
1 1 1

3 4
1 2 1 1 3

-
-

+ + + +
-

+ +, , (ln()) , () , , ()sin() / ln() 11-i

>> (i^8-i^(-8))/(3-4*i) + 1
 
ans =
 
1
 

Chapter 8 ■ Optimization of Functions of Complex Variables

202

>> i^(sin(1+i))
 
ans =
 
-0.16665202215166 + 0.32904139450307i
 
>> (2+log(i))^(1/i)
 
ans =
 
1.15809185259777 - 1.56388053989023i
 
>> (1+i)^i
 
ans =
 
0.42882900629437 + 0.15487175246425i
 
>> i^(log(1+i))
 
ans =
 
0.24911518828716 + 0.15081974484717i
 
>> (1+sqrt(3)*i)^(1-i)
 
ans =
 
5.34581479196611 + 1.97594883452873i

EXERCISE 8-3

Find the real part, imaginary part, modulus and argument of the following expressions:

i i i ii i i ii3 11 3+ -+, () , ,

>> Z1=i^3*i; Z2=(1+sqrt(3)*i)^(1-i); Z3=(i^i)^i;Z4=i^i;
 
>> format short
 
>> real([Z1 Z2 Z3 Z4])

ans =
 
1.0000 5.3458 0.0000 0.2079
 

Chapter 8 ■ Optimization of Functions of Complex Variables

203

>> imag([Z1 Z2 Z3 Z4])
 
ans =
 
0 1.9759 -1.0000 0
 
>> abs([Z1 Z2 Z3 Z4])
 
ans =
 
1.0000 5.6993 1.0000 0.2079
 
>> angle([Z1 Z2 Z3 Z4])
 
ans =
 
0 0.3541 -1.5708 0

EXERCISE 8-4

Consider the 3×3 matrix M whose elements are the squares of the first nine positive integers, multiplied by the
imaginary unit (reading from left to right and top to bottom).

Find the square, the square root and the exponential to base 2 and – 2 of M.

Find the elementwise Naperian logarithm and base e exponential of M.

Find eM and log(M).

>> M = i*[1 2 3;4 5 6;7 8 9]
 
M =
0 + 1.0000i 0 + 2.0000i 0 + 3.0000i
0 + 4.0000i 0 + 5.0000i 0 + 6.0000i
0 + 7.0000i 0 + 8.0000i 0 + 9.0000i
 
>> C = M^2
 
C =
 
 -30 -36 -42
 -66 -81 -96
-102 -126 -150
 
>> D = M^(1/2)
 
D =
 
0.8570 - 0.2210i 0.5370 + 0.2445i 0.2169 + 0.7101i
0.7797 + 0.6607i 0.9011 + 0.8688i 1.0224 + 1.0769i
0.7024 + 1.5424i 1.2651 + 1.4930i 1.8279 + 1.4437i
 

Chapter 8 ■ Optimization of Functions of Complex Variables

204

>> 2^M
 
ans =
 
 0.7020 - 0.6146i -0.1693 - 0.2723i -0.0407 + 0.0699i
-0.2320 - 0.3055i 0.7366 - 0.3220i -0.2947 - 0.3386i
-0.1661 + 0.0036i -0.3574 - 0.3717i 0.4513 - 0.7471i
 
>> (-2)^M
 
ans =
 
 17.3946 - 16.8443i 4.3404 - 4.5696i -7.7139 + 7.7050i
 1.5685 - 1.8595i 1.1826 - 0.5045i -1.2033 + 0.8506i
-13.2575 + 13.1252i -3.9751 + 3.5607i 6.3073 - 6.0038i
 
>> log(M)
 
ans =
 
 0 + 1.5708i 0.6931 + 1.5708i 1.0986 + 1.5708i
1.3863 + 1.5708i 1.6094 + 1.5708i 1.7918 + 1.5708i
1.9459 + 1.5708i 2.0794 + 1.5708i 2.1972 + 1.5708i
 
>> exp(M)
 
ans =
 
 0.5403 + 0.8415i -0.4161 + 0.9093i -0.9900 + 0.1411i
-0.6536 - 0.7568i 0.2837 - 0.9589i 0.9602 - 0.2794i
 0.7539 + 0.6570i -0.1455 + 0.9894i -0.9111 + 0.4121i
 
>> logm(M)
 
ans =
 
-5.4033 - 0.8472i 11.9931 - 0.3109i -5.3770 + 0.8846i
12.3029 + 0.0537i -22.3087 + 0.8953i 12.6127 + 0.4183i
-4.7574 + 1.6138i 12.9225 + 0.7828i -4.1641 + 0.6112i
 
>> expm(M)
 
ans =
 
 0.3802 - 0.6928i -0.3738 - 0.2306i -0.1278 + 0.2316i
-0.5312 - 0.1724i 0.3901 - 0.1434i -0.6886 - 0.1143i
-0.4426 + 0.3479i -0.8460 - 0.0561i -0.2493 - 0.4602i

Chapter 8 ■ Optimization of Functions of Complex Variables

205

EXERCISE 8-5.

Consider the vector sum Z of the complex vector V = (i,-i, i) and the real vector R = (0,1,1). Find the mean,
median, standard deviation, variance, sum, product, maximum and minimum of the elements of V, as well as its
gradient, the discrete Fourier transform and its inverse.

>> Z = [i,-i,i]
 
Z =
 
0 + 1.0000i 0 - 1.0000i 0 + 1.0000i
 
>> R = [0,1,1]
 
R =
 
0 1 1
 
>> V = Z+R
 
V =
 
0 + 1.0000i 1.0000 - 1.0000i 1.0000 + 1.0000i
 
>> [mean(V),median(V),std(V),var(V),sum(V),prod(V),max(V),min(V)]'
 
ans =
 
0.6667 - 0.3333i
1.0000 + 1.0000i
1.2910
1.6667
2.0000 - 1.0000i
 0 - 2.0000i
1.0000 + 1.0000i
 0 - 1.0000i
 
>> gradient(V)
 
ans =
 
1.0000 - 2.0000i 0.5000 0 + 2.0000i
 
>> fft(V)
 
ans =
 
2.0000 + 1.0000i -2.7321 + 1.0000i 0.7321 + 1.0000i
 
>> ifft(V)

ans =
 
0.6667 + 0.3333i 0.2440 + 0.3333i -0.9107 + 0.3333i

Chapter 8 ■ Optimization of Functions of Complex Variables

206

EXERCISE 8-6.

Given the following matrices:

A A B1

1 0 0

0 1 0

0 0 1

2

0 1 0

0 0 1

0 0 0

1

0 1 2

0 1 3

0 0 0

=
é

ë

ê
ê
ê

ù

û

ú
ú
ú

=
é

ë

ê
ê
ê

ù

û

ú
ú
ú

= -
é

ëë

ê
ê
ê

ù

û

ú
ú
ú

=
- -é

ë

ê
ê
ê

ù

û

ú
ú
ú

B

i i i

i

i

2 0 0

0 0

C sqrt i sqrt i C1

1 1 0

1 2 2

0 0 1

2

0 2 1

1 0 0

1 1 0

=
-

- -
-

é

ë

ê
ê
ê

ù

û

ú
ú
ú

=
-

é

ë

ê
ê
ê

() ()

ùù

û

ú
ú
ú

First calculate A = A1 + A2, B = B1 - B2 and C = C1 + C2.

Then calculate AB - BA,  A2 + B2 + C2,  ABC, sqrt (A) + sqrt (B) - sqrt(C), (eB+ eC), their transposes and their
inverses.

Finally check that any matrix multiplied by its inverse yields the identity matrix.

>> A1 = eye(3)
 
A1 =
 
1 0 0
0 1 0
0 0 1
 
>> A2 = [0 1 0; 0 0 1;0 0 0]
 
A2 =
 
0 1 0
0 0 1
0 0 0
 
>> A = A1+A2
 
A =
 
1 1 0
0 1 1
0 0 1
 
>> B1 = [0 1 2;0 -1 3;0 0 0]
 
B1 =
 
0 1 2
0 -1 3
0 0 0
 

Chapter 8 ■ Optimization of Functions of Complex Variables

207

>> B2 = [-i i -i;0 0 i;0 0 i]
   
B2 =
 
0 - 1.0000i 0 + 1.0000i 0 - 1.0000i
0 0 0 + 1.0000i
0 0 0 + 1.0000i
 
>> B = B1-B2
 
B =
 
0 + 1.0000i 1.0000 - 1.0000i 2.0000 + 1.0000i
0 -1.0000 3.0000 - 1.0000i
0 0 0 - 1.0000i
 
>> C1 = [1, -1, 0;-1,sqrt(2)*i,-sqrt(2)*i;0,0,-1]
 
C1 =
 
 1.0000 -1.0000 0
-1.0000 0 + 1.4142i 0 - 1.4142i
 0 0 -1.0000
 
>> C2 = [0 2 1;1 0 0;1 -1 0]
 
C2 =
 
0 2 1
1 0 0
1 -1 0
 
>> C = C1+C2
 
C =
 
1.0000 1.0000 1.0000
 0 0 + 1.4142i 0 - 1.4142i
1.0000 -1.0000 -1.0000
 
>> M1 = A*B-B*A
 
M1 =
 
0 -1.0000 - 1.0000i 2.0000
0 0 1.0000 - 1.0000i
0 0 0
 

Chapter 8 ■ Optimization of Functions of Complex Variables

208

>> M2 = A^2+B^2+C^2
 
M2 =
 
2.0000 2.0000 + 3.4142i 3.0000 - 5.4142i
 0 - 1.4142i -0.0000 + 1.4142i 0.0000 - 0.5858i
 0 2.0000 - 1.4142i 2.0000 + 1.4142i
 
>> M3=A*B*C
 
M3 =
 
5.0000 + 1.0000i -3.5858 + 1.0000i -6.4142 + 1.0000i
3.0000 - 2.0000i -3.0000 + 0.5858i -3.0000 + 3.4142i
 0 - 1.0000i 0 + 1.0000i 0 + 1.0000i
 
>> M4 = sqrtm(A)+sqrtm(B)-sqrtm(C)
 
M4 =
 
 0.6356 + 0.8361i -0.3250 - 0.8204i 3.0734 + 1.2896i
 0.1582 - 0.1521i 0.0896 + 0.5702i 3.3029 - 1.8025i
-0.3740 - 0.2654i 0.7472 + 0.3370i 1.2255 + 0.1048i
 
 
>> M5 = expm(A)*(expm(B)+expm(C))
 
M5 =
 
14.1906 - 0.0822i 5.4400 + 4.2724i 17.9169 - 9.5842i
 4.5854 - 1.4972i 0.6830 + 2.1575i 8.5597 - 7.6573i
 3.5528 + 0.3560i 0.1008 - 0.7488i 3.2433 - 1.8406i
 
>> inv(A)
 
ans =
 
1 -1 1
0 1 -1
0 0 1
 
>> inv(B)
 
ans =
 
0 - 1.0000i -1.0000 - 1.0000i -4.0000 + 3.0000i
0 -1.0000 1.0000 + 3.0000i
0 0 0 + 1.0000i
 

Chapter 8 ■ Optimization of Functions of Complex Variables

209

>> inv(C)
 
ans =
 
0.5000 0 0.5000
0.2500 0 - 0.3536i -0.2500
0.2500 0 + 0.3536i -0.2500
 
>> [A*inv(A) B*inv(B) C*inv(C)]
 
ans =
 
1 0 0 1 0 0 1 0 0
0 1 0 0 1 0 0 1 0
0 0 1 0 0 1 0 0 1
 
>> A'
 
ans =
 
1 0 0
1 1 0
0 1 1
 
>> B'
 
ans =
 
 0 - 1.0000i 0 0
1.0000 + 1.0000i -1.0000 0
2.0000 - 1.0000i 3.0000 + 1.0000i 0 + 1.0000i
 
>> C'
 
ans =
 
1.0000 0 1.0000
1.0000 0 - 1.4142i -1.0000
1.0000 0 + 1.4142i -1.0000

Chapter 8 ■ Optimization of Functions of Complex Variables

210

EXERCISE 8-7

Apply the sine, base e exponential, logarithm, square root, modulus, argument and rounding functions to each of
the following matrices:

A B
i i

i i
=
é

ë

ê
ê
ê

ù

û

ú
ú
ú

=
+ +
+ +

é

ë
ê

ù

û
ú

1 2 3

4 5 6

7 8 9

1 2

3 4
, .

Calculate eB and ln(A).

>> A = [1 2 3; 4 5 6; 7 8 9]
 
A =
 
1 2 3
4 5 6
7 8 9
 
>> sin(A)
 
ans =
 
 0.8415 0.9093 0.1411
-0.7568 -0.9589 -0.2794
 0.6570 0.9894 0.4121
 
>> B =[1+i 2+i;3+i,4+i]
 
B =
 
1.0000 + 1.0000i 2.0000 + 1.0000i
3.0000 + 1.0000i 4.0000 + 1.0000i
 
>> sin(B)
 
ans =
 
1.2985 + 0.6350i 1.4031 - 0.4891i
0.2178 - 1.1634i -1.1678 - 0.7682i
 
>> exp(A)
 
ans =
 
1.0e+003 *
 
0.0027 0.0074 0.0201
0.0546 0.1484 0.4034
1.0966 2.9810 8.1031
 

Chapter 8 ■ Optimization of Functions of Complex Variables

211

>> exp(B)
 
ans =
 
 1.4687 + 2.2874i 3.9923 + 6.2177i
10.8523 + 16.9014i 29.4995 + 45.9428i
 
>> log(B)
 
ans =
 
0.3466 + 0.7854i 0.8047 + 0.4636i
1.1513 + 0.3218i 1.4166 + 0.2450i
 
>> sqrt(B)
 
ans =
 
1.0987 + 0.4551i 1.4553 + 0.3436i
1.7553 + 0.2848i 2.0153 + 0.2481i
 
>> abs(B)
 
ans =
 
1.4142 2.2361
3.1623 4.1231
 
>> imag(B)
 
ans =
 
1 1
1 1
 
>> fix(sin(B))
 
ans =
 
1.0000 1.0000
0 - 1.0000i - 1.0000
 
>> ceil(log(A))
 
ans =
 
0 1 2
2 2 2
2 3 3
 

Chapter 8 ■ Optimization of Functions of Complex Variables

212

>> sign(B)
 
ans =
 
0.7071 + 0.7071i 0.8944 + 0.4472i
0.9487 + 0.3162i 0.9701 + 0.2425i

The exponential functions, square root and logarithm used above apply element wise to the array, and have
nothing to do with the matrix exponential and logarithmic functions that are used below.

>> expm(B)
 
ans =
 
1.0e+002 *
 
-0.3071 + 0.4625i -0.3583 + 0.6939i
-0.3629 + 1.0431i -0.3207 + 1.5102i
 
>> logm(A)
 
ans =
 
-5.6588 + 2.7896i 12.5041 - 0.4325i -5.6325 - 0.5129i
12.8139 - 0.7970i -23.3307 + 2.1623i 13.1237 - 1.1616i
-5.0129 - 1.2421i 13.4334 - 1.5262i -4.4196 + 1.3313i

EXERCISE 8-8

Solve the following equation in the complex field:

sin (z) = 2.

>> vpa(solve ('sin (z) = 2'))
  
ans =
  
1.316957896924816708625046347308 * i + 1.5707963267948966192313216916398
1.5707963267948966192313216916398 1.316957896924816708625046347308 * i

Chapter 8 ■ Optimization of Functions of Complex Variables

213

EXERCISE 8-9

Solve the following equations:

a.	 1 + x + x2 + x3 + x4 + x5 = 0

b.	 x2 + (6-i)x + 8-4i = 0

c.	 tan(Z) = 3i/5

>> solve('1+x+x^2+x^3+x^4+x^5 = 0')
  
ans =
  
 -1
 -1/2 - (3-^(1/2) * i) / 2
 1/2 - (3-^(1/2) * i) / 2
 -1/2 + (3 ^(1/2) * i) / 2
 1/2 + (3 ^(1/2) * i) / 2
  
>> solve('x ^ 2 +(6-i) * x + 8-4 * i = 0')
  
ans =
  
 -4
 i 2
 
>> vpa(solve('tan(Z) = 3 * i/5 '))
  
ans =
  
0.69314718055994530941723212145818 * i

EXERCISE 8-10

Find the results of the following operations:

a.	 the fourth root of - 1 and 1;

b.	 the fifth roots of 2 + 2i and - 1 + i 3 ;

c.	 the real part of tan (iLn ((a+ib) / (a-ib)));

d.	 the imaginary part of (2 + i)cos(4+i).

Chapter 8 ■ Optimization of Functions of Complex Variables

214

>> solve('x^4+1=0')
  
ans =
  
2 ^(1/2) *(-i/2-1/2)
2 ^(1/2) *(i/2-1/2)
2 ^(1/2) *(1/2-i/2)
2 ^(1/2) *(i/2 + 1/2)
  
>> pretty (solve('x^4+1=0'))
  
 +- -+
 | 1/2 / i 1 \ |
 | 2 | - - - - | |
 | \ 2 2 / |
 | |
 | 1/2 / i 1 \ |
 | 2 | - - - | |
 | \ 2 2 / |
 | |
 | 1/2 / 1 i \ |
 | 2 | - - - | |
 | \ 2 2 / |
 | |
 | 1/2 / i 1 \ |
 | 2 | - + - | |
 | \ 2 2 / |
 +- -+
 
>> solve('x^4-1=0')
  
ans =
  
-1
 1
-i
 i
  
>> vpa(solve('x^5-2-2*i=0'))
  
ans =
  
 0.19259341768888084906125263406469 * i + 1.2159869826496146992458377919696
-0.87055056329612413913627001747975 * i - 0.87055056329612413913627001747975
 0.55892786746600970394985946846702 * i - 1.0969577045083811131206798770216
 0.55892786746600970394985946846702 1.0969577045083811131206798770216 * i
 1.2159869826496146992458377919696 * i + 0.19259341768888084906125263406469
  

Chapter 8 ■ Optimization of Functions of Complex Variables

215

>> vpa(solve('x^5+1-sqrt(3)*i=0'))
  
ans =
  
 0.46721771281818786757419290603946 * i + 1.0493881644090691705137652947201
 1.1424056652180689506550734259384 * i - 0.1200716738059215411240904754285
 0.76862922680258900220179378744147 0.85364923855044142809268986292246 * i
-0.99480195671282768870147766609475 * i - 0.57434917749851750339931347338896
 0.23882781722701229856490119703938 * i - 1.1235965399072191281921551333441
 
>> simplify(vpa(real(tan(i * log((a+i*b) /(a-i*b))))))
  
ans =
  
-0.5 * tanh (conj (log ((a^2 + 2.0*a*b*i-1.0*b^2) /(a^2 + b^2))) *
i + (0.5 * ((a^2 + 2.0*a*b*i-1.0*b^2) ^ 2 /(a^2 + b^2) ^ 2 - 1) * i) /
((a^2 + 2.0*a*b*i-1.0*b^2) ^ 2 /(a^2 + b^2) ^ 2 + 1))
  
>> simplify(vpa(imag((2+i)^cos(4-i))))
  
ans =
  
-0.62107490808037524310236676683417

217

Chapter 9

Algebraic Expressions, Polynomials,
Equations and Systems. Tools for
Optimization

9.1 Expanding, Simplifying and Factoring Algebraic Expressions
MATLAB incorporates a wide range of commands, including simplification, expansion and factorization, that allow
you to work with algebraic expressions. The following table shows the most common commands used when working
with algebraic expressions.

expand (expr) Expands an algebraic expression, presenting the result as a sum of products and powers,
applying multiple angle rules for trigonometric expressions and the formal properties of
exponential and logarithmic functions. It also decomposes quotients of polynomials into sums
of simpler polynomial quotients.

>> syms x y z t a b

>> pretty(expand((x+2)*(x+3)))

2

x + 5 x + 6

>> pretty(expand((x+2)/(x+3)))

x 2

----- + -----

x + 3 x + 3

>> pretty(expand(cos(x+y)))

cos(x) cos(y) - sin(x) sin(y)

(continued)

Chapter 9 ■ Algebraic Expressions, Polynomials, Equations and Systems. Tools for Optimization

218

factor (expr) The reverse operation of expand. Writes an algebraic expression as a product of factors.

>> syms x y

>> pretty(factor(6*x^2+18*x-24))

6 (x + 4) (x - 1)

>> pretty(factor((x^3-y^3) /(x^4-y^4)))

 2 2

x + x y + y

 2 2

(x + y) (x + y)

>> pretty(factor(x^3+y^3))

 2 2

(x + y) (x - x y + y)

simplify (expr) Simplifies an algebraic expression as much as possible.

>> syms x y b c

>> simplify(sin(x) ^ 2 + cos(x) ^ 2) * 2

ans =

2

>> simplify(log(exp(a+log exp (c)))))

ans =

log (exp(a + c))

simple (expr) Searches for the simplest form of an algebraic expression.

>> syms a positive;

f = (1/a^3 + 6/a^2 + 12/a + 8)^(1/3);

>> simplify(f)

ans =

(8*a^3 + 12*a^2 + 6*a + 1)^(1/3)/a

>> simple(f)

simplify:

(2*a + 1)/a

radsimp:

(12/a + 6/a^2 + 1/a^3 + 8)^(1/3)

simplify(100):

1/a + 2

combine(sincos):

(12/a + 6/a^2 + 1/a^3 + 8)^(1/3)

combine(sinhcosh):

(12/a + 6/a^2 + 1/a^3 + 8)^(1/3)

(continued)

Chapter 9 ■ Algebraic Expressions, Polynomials, Equations and Systems. Tools for Optimization

219

combine(ln):

(12/a + 6/a^2 + 1/a^3 + 8)^(1/3)

factor:

(12/a + 6/a^2 + 1/a^3 + 8)^(1/3)

expand:

(12/a + 6/a^2 + 1/a^3 + 8)^(1/3)

combine:

(12/a + 6/a^2 + 1/a^3 + 8)^(1/3)

rewrite(exp):

(12/a + 6/a^2 + 1/a^3 + 8)^(1/3)

rewrite(sincos):

(12/a + 6/a^2 + 1/a^3 + 8)^(1/3)

rewrite(sinhcosh):

(12/a + 6/a^2 + 1/a^3 + 8)^(1/3)

rewrite(tan):

(12/a + 6/a ^ 2 + 1/a ^ 3 + 8) ^(1/3)

mwcos2sin:

(12/a + 6/a ^ 2 + 1/a ^ 3 + 8) ^(1/3)

collect(a):

(12/a + 6/a^2 + 1/a^3 + 8)^(1/3)

ans =

1/a + 2

>> g=simple(f)

g =

1/a + 2

collect (expr) Groups terms of the expression together into powers of its variables.

>> syms x;

f = x*(x*(x - 6) + 11) - 6;

>> collect(f)

ans =

x^3 - 6*x^2 + 11*x – 6

>> f = (1+x)*t + x*t;

>> collect(f)

ans =

(2*t)*x + t

Horner (expr) Factors the expression in Horner form.

>> syms x;

f = x^3 - 6*x^2 + 11*x - 6;

>> horner(f)

ans =

x*(x*(x - 6) + 11) - 6

Chapter 9 ■ Algebraic Expressions, Polynomials, Equations and Systems. Tools for Optimization

220

9.2 Polynomials
MATLAB implements specific commands for working with polynomials, such as finding their roots, differentiation
and interpolation. The following table shows the syntax and examples of the most important of these commands.

poly2sym(vector) Converts a vector of coefficients into the corresponding symbolic polynomial
( from highest to lowest power).

>> poly2sym([3 5 0 8 9])

ans =

3*x^4 + 5*x^3 + 8*x + 9

poly2sym(vector, ‘v’) Converts a vector of coefficients into the corresponding symbolic polynomial in v
( from highest to lowest power).

>> poly2sym([3 5 0 8 9],'z')

ans =

3*z^4 + 5*z^3 + 8*z + 9

sym2poli(polynomial) Converts a symbolic polynomial into a vector of coefficients (the coefficient are
given in decreasing order of power).

>> syms x

>> sym2poly(x^5-3*x^4+2*x^2-7*x+12)

ans =

1 -3 0 2 -7 12

q=conv(u,v) Gives the coefficients of the polynomial product of two polynomials whose
coefficients are given by the vectors u and v.

>> u=[3 -1 4 2];v=[2 1 4 6 8 3];

>> p=conv(u,v)

p =

6 1 19 22 36 33 41 28 6

>> poly2sym(p)

ans =

6*x^8 + x^7 + 19*x^6 + 22*x^5 + 36*x^4 + 33*x^3 + 41*x^2 + 28*x + 6

(continued)

Chapter 9 ■ Algebraic Expressions, Polynomials, Equations and Systems. Tools for Optimization

221

[q, r] = deconv(v,u) Gives the polynomial quotient and remainder of the division between polynomials
u and v, so that v = conv (u, q) + r.

>> [q,r] = deconv(v,u)

q =

0.6667 0.5556 0.6296

r =

0 0 0 3.0741 4.3704 1.7407

>> poly2sym(q)

ans =

(2*x^2)/3 + (5*x)/9 + 17/27

>> poly2sym(r)

ans =

(83*x^2)/27 + (118*x)/27 + 47/27

p = poly (r) Gives the coefficients of the polynomial p whose roots are specified by the vector r.

>> p=poly(u)

p =

1 -8 17 2 -24

>> poly2sym(p)

ans =

x^4 - 8*x^3 + 17*x^2 + 2*x - 24

k = polyder(p)

k = polyder(a,b)

[q,d] = polyder(a,b)

Gives the coefficients k of the derivative of the polynomial p.

Gives the coefficients k of the derivative of the product of polynomials a and b.

Gives the numerator q and denominator d of the derivative of a/b

>> polyder([1 -8 17 2 -24])

ans =

4 -24 34 2

>> poly2sym([1 -8 17 2 -24])

ans =

x^4 - 8*x^3 + 17*x^2 + 2*x – 24

>> poly2sym(polyder([1 -8 17 2 -24]))

ans =

4*x^3 - 24*x^2 + 34*x + 2

>> u = [3 - 1 4 2]; v = [2 1 4 6 8 3];

>> k = polyder(u,v)

k =

48 7 114 110 144 99 82 28

>> poly2sym(k)

ans =

48*x^7 + 7*x^6 + 114*x^5 + 110*x^4 + 144*x^3 + 99*x^2 + 82*x + 28

(continued)

Chapter 9 ■ Algebraic Expressions, Polynomials, Equations and Systems. Tools for Optimization

222

>> [q, d] = polyder(u,v)

q =

-12 3 -30 -10 8 -29 -30 -4

d =

4 4 17 32 60 76 106 120 100 48 9

p = polyfit(x, y, n)

[p,S] = polyfit(x,y,n)

[p, S, u] = polyfit (x, y, n)

Finds the polynomial of degree n which is the best fit of the set of points (x, y).

Finds the polynomial of degree n which is the best fit of the set of points (x, y) and
also returns structure data S of the fit.

Finds the coefficients of the polynomial in ˆ ()/x x m s= - which best fits the data, and
also returns the structure data S and the row vector u=[m, s], where m is the mean
and s is the standard deviation of the data x.

>> u = [3 -1 4 2];v=[2 1 4 6];

>> p = poly2sym(polyfit(u,v,3))

p =

(53*x^3)/60 - (99*x^2)/20 + (119*x)/30 + 54/5

>> [p,S,u] = polyfit(u,v,3)

p =

8.9050 1.6333 -11.3053 6.0000

S =

R: [4x4 double]

df: 0

normr: 1.2686e-014

u =

2.0000

2.1602

y = polyval(p,x)

y = polyval(p,x,[],u)

[y, delta] = polyval (p, x, S)

[y, delta] = polyval(p,x,S,u)

Evaluates the polynomial p at x.

If u=[m,s], evaluates the polynomial p at ˆ ()/x x m s= - .

Uses the optional output structure S generated by polyfit to generate error estimates delta.

Does the above with ˆ ()/x x m s= - in place of x, where u[m,s].

>> p = [2 0 -1 7 9]

p =

2 0 -1 7 9

>> poly2sym(p)

ans =

2*x^4 - x^2 + 7*x + 9

>> polyval(p,10)

ans =

19979

(continued)

Chapter 9 ■ Algebraic Expressions, Polynomials, Equations and Systems. Tools for Optimization

223

Y = polyvalm (p, X) For a polynomial p and a matrix X, evaluates p(X) in the matrix sense.

>> X = [1 2 3; 4 5 6; 7 8 9]

X =

1 2 3

4 5 6

7 8 9

>> p = [2 0 -1 7 9]

p =

2 0 -1 7 9

>> A = polyval(p,X)

A =

17 51 183

533 1269 2607

4811 8193 13113

[r,p,k] = residue(b,a)

[b,a] = residue(r,p,k)

Finds the residues, poles and direct term of the rational expansion of b/a.

b s

a s

r

s p

r

s p

r

s p
k sn

n

()

()
().=

-
+

-
+ +

-
+1

1

2

2



Converts the partial fraction expansion back into a quotient of polynomials.

>> u = [3 -1 4 2]; v = [2 1 4 6 8 3];

>> [r,p,k] = residue(v,u)

r =

0.4751 - 0.6032i

0.4751 + 0.6032i

0.0745

p =

0.3705 + 1.2240i

0.3705 - 1.2240i

-0.4076

k =

0.6667 0.5556 0.6296

>> [v,u] = residue(r,p,k)

v =

0.6667 0.3333 1.3333 2.0000 2.6667 1.0000

u =

1.0000 -0.3333 1.3333 0.6667

(continued)

Chapter 9 ■ Algebraic Expressions, Polynomials, Equations and Systems. Tools for Optimization

224

r = roots(c) Gives the column vector r of the roots of the polynomial with coefficients c.

>> v = [0.6667 0.3333 1.3333 2.0000 2.6667 1.0000];

>> r = roots(v)

r =

0.6662 + 1.4813i

0.6662 - 1.4813i

-0.6662 + 0.8326i

-0.6662 - 0.8326i

-0.5000

9.3 Polynomial Interpolation
MATLAB implements both algebraic and graphical commands for polynomial interpolation, the most important of
which are summarized in the following table.

Yi = interp1(X, Y, Xi)

Yi = interp1(Y,Xi)

Yi = interp1(X,Y,Xi,method)

Yi= interp1(X,Y,Xi, method,ext)

Returns a vector Yi such that (Xi, Yi) is the total set of points found by
one-dimensional linear interpolation of the given set of points (X, Y).

Equivalent to interp1(X,Y,Xi) with X = 1: n, where n is the length of Y.

Performs the interpolation using the given method, which can be nearest
(nearest neighbor), linear, cubic (cubic Hermite), v5cubic (MATLAB 5 cubic),
spline or pchip (cubic Hermite).

Additionally specifies a strategy for evaluating points that lie outside the
domain of X.

In the following example, 21 points (x,y) are interpolated depending on the
function y = sin (x) for x values equally spaced between 0 and 10.

>> x = 0:10; y = sin (x); Xi = 0:.5:10; yi = interp1 (x, y, xi);
points = [xi', yi']

points =

0 0

0.5000 0.4207

1.0000 0.8415

1.5000 0.8754

2.0000 0.9093

2.5000 0.5252

3.0000 0.1411

3.5000 -0.3078

4.0000 -0.7568

4.5000 -0.8579

5.0000 -0.9589

(continued)

Chapter 9 ■ Algebraic Expressions, Polynomials, Equations and Systems. Tools for Optimization

225

5.5000 -0.6192

6.0000 -0.2794

6.5000 0.1888

7.0000 0.6570

7.5000 0.8232

8.0000 0.9894

8.5000 0.7007

9.0000 0.4121

9.5000 -0.0660

10.0000 -0.5440

We can represent the points in the following form:

plot(x,y,'o',xi,yi)

(continued)

Chapter 9 ■ Algebraic Expressions, Polynomials, Equations and Systems. Tools for Optimization

226

Zi = interp2(X,Y,Z,Xi,Yi)

Zi = interp2(Z,Xi,Yi)

Zi = interp2(Z,n)

Zi = interp2(X,Y,Z,Xi,Yi,method)

Returns a vector Zi such that (Xi, Yi, Zi) is the set of points found by
two-dimensional linear interpolation of the set of given points (X, Y, Z).

Equivalent to the above with X = 1: n and Y = 1:m where (n, m) = size(Z).

Returns the interpolated values on a refined grid formed by repeatedly dividing
the intervals n times in each dimension.

In addition specifies the method of interpolation. Possible methods are nearest
(nearest neighbor), linear, cubic (cubic Hermite) and spline interpolation.

In the following example we consider a set of years, years of service and wages
and try to find by interpolation the salary earned in 1975 by an employee with
15 years of service.

>> years = 10:1950:1990;

service = 10:10:30;

wages = [150.697 199.592 187.625

179.323 195.072 250.287

203.212 179.092 322.767

226.505 153.706 426.730

249.633 120.281 598.243];

w = interp2(service,years,wages,15,1975)

w =

190.6288

vi = interp3(X,Y,Z,V,Xi,Yi,Zi)

vi = interp3(V, Xi, Yi, Zi)

vi = interp3(V,n)

Returns interpolated values of a function of three variables at specific query
points using linear interpolation. The results always pass through the original
sampling of the function. X, Y, and Z contain the coordinates of the sample
points. V contains the corresponding function values at each sample point. Xi,
Yi, and Zi contain the coordinates of the query points.

Equivalent to the above with X = 1: n, Y = 1:m, Z = 1:p where (n, m, p) = size(V).

Returns the interpolated values on a refined grid formed by repeatedly dividing
the intervals n times in each dimension.

(continued)

Chapter 9 ■ Algebraic Expressions, Polynomials, Equations and Systems. Tools for Optimization

227

vi = interp3(…,method) Performs the interpolation using the specified method.

The following example calculates and represents interpolated values of the
MATLAB function flow by taking several slices through the data and displaying
the interpolated data on each slice. The three axes are sampled in equal
intervals of 0.5, for x between 0.1 and 10 and y and z between -3 and 3.

>> [x, y, z, v] = flow(10);

[xi, yi, zi] = meshgrid(.1:.5:10,-3:.5:3,-3:.5:3);

vi = interp3(x,y,z,v,xi,yi,zi);

slice(xi,yi,zi,vi,[6 9.5],2,[-2 .2]), shading flat

Y = interpft(X,n) One-dimensional interpolation using the FFT method. Gives the vector
containing the values of the periodic function X sampled at n equally spaced
points. The original vector X is transformed to the Fourier domain via the fast
Fourier transform (FFT).

(continued)

Chapter 9 ■ Algebraic Expressions, Polynomials, Equations and Systems. Tools for Optimization

228

y = interpft (x, n, dim) Operates along the specified dimension.

Below is an example where the original points and the interpolated points
using the FFT method are compared.

>> y = [0:. 5:2 1.5:-. 5: - 2 - 1.5:. 5:0]; % Equally spaced
points

factor = 5; A factor of 5% Tween

m = length(y) * factor;

x = 1:factor: m;

XI = 1;

Yi = interpft (y, m);

plot(x,y,'o',xi,yi,'*')

Legend ('original data', 'interpolated data')

Vi = interpn(X,Y,Z,…V, Xi, Yi, Zi…)

Vi = interpn (V, Xi, Yi, Zi)

Vi = interpn (V, n)

Vi = interpn(…,method)

Returns interpolated values of a function of n variables at specific query
points using linear interpolation. The results always pass through the original
sampling of the function. X,Y,Z,… contain the coordinates of the sample points.
V contains the corresponding function values at each sample point. Xi,Yi,Zi,…
contain the coordinates of the query points.

Equivalent to the above with X = 1: n, Y = 1:m, Z = 1:p,…
where (n, m, p,…) = size(V).

Returns the interpolated values on a refined grid formed by repeatedly dividing
the intervals n times in each dimension.

Interpolation using the specified method.

Yi = pchip (X, Y, Xi)

pp = pchip(X,Y)

Returns a vector Yi containing elements corresponding to the elements of Xi and
determined by piecewise cubic interpolation within vectors X and Y.

Returns a piecewise polynomial structure for use by ppval.

(continued)

Chapter 9 ■ Algebraic Expressions, Polynomials, Equations and Systems. Tools for Optimization

229

Yi = spline (X, Y, Xi)

pp = spline(X,Y)

Uses a cubic spline interpolation to find Yi, the values of the underlying function
Y at the values of the interpolant Xi. The simple points are determined by X.

Returns the piecewise polynomial form of the cubic spline interpolant for later
use with ppval and the spline utility unmkpp.

In the following example the original points are compared with the
interpolated points obtained using the the pchip and spline methods.

>> x = - 3:3;

y = [- 1 - 1 - 1 0 1 1 1];

t = - 3:. 01:3;

plot(x, y, 'o', t, [pchip(x, y, t); spline(x,y,t)])

legend('data','pchip','spline',4)

Zi = griddata(X,Y,Z,Xi,Yi)

[Xi, Yi, Zi] = griddata(X,Y,Z,Xi,Yi)

Fits a surface of the form Z = f(X,Y) to the scattered data in the vectors (X,Y,Z).
The function interpolates the surface at the query points specified by (Xi,Yi) and
returns the interpolated values, Zi. The surface always passes through the data
points defined by X and Y. The method of interpolation is linear by default.

Returns in addition to Zi the vectors Xi and Yi.

(continued)

Chapter 9 ■ Algebraic Expressions, Polynomials, Equations and Systems. Tools for Optimization

230

[…] = griddata(…,method) Interpolation using the specified method.

The example below interpolates scattered data over a grid.

x = rand (100.1) * 4-2; y = rand (100.1) * 4-2;

z = x.*exp(-x.^2-y.^2);

ti = -2:.25:2;

[xi,yi] = meshgrid(ti,ti);

Zi = griddata(x,y,z,xi,yi);

mesh(xi,yi,zi), hold on, plot3(x,y,z,'o'),

hold off

(continued)

Chapter 9 ■ Algebraic Expressions, Polynomials, Equations and Systems. Tools for Optimization

231

W = griddata3(X,Y,Z,V,Xi,Yi,Zi)

W = griddata3(…,'method')

Fits a hypersurface of the form V = f(X,Y,Z) to the scattered data in the vectors
(X,Y,Z,V). The function interpolates the hypersurface at the query points
specified by (Xi,Yi,Zi) and returns the interpolated values, W. The surface
always passes through the data points defined by X, Y and Z. The method of
interpolation is linear by default.

Interpolation using the specified method.

Below is an example of fitting a hypersurface to scattered data by
interpolation.

>> x = 2*rand(5000,1)-1; y = 2*rand(5000,1)-1; z = 2*rand(5000,1)-1;

v = x.^2 + y.^2 + z.^2;

d = -0.8:0.05:0.8;

[xi,yi,zi] = meshgrid(d,d,d);

w = griddata3(x,y,z,v,xi,yi,zi);

p = patch(isosurface(xi,yi,zi,w,0.8));

isonormals(xi,yi,zi,w,p);

set(p,'FaceColor','blue','EdgeColor','none');

view(3), axis equal, axis off, camlight, lighting phong

Chapter 9 ■ Algebraic Expressions, Polynomials, Equations and Systems. Tools for Optimization

232

9.4 Solving Equations and Systems of Equations
MATLAB includes multiple commands for solving equations and systems of equations. The following sections present
the syntax and main features of these methods.

9.4.1 General Methods
Below are the most common MATLAB commands used to solve equations and systems.

solve(‘equation', ‘x') Solve the equation in the variable x.

The equation p * sin (x) = r is solved as follows:

>> solve('p*sin(x) = r')

ans =

asin(r/p)

pi - asin(r/p)

syms x;
solve (equ (x), x)

Solve the equation equ (x) = 0 in the variable x.

The equation p * cos (x) = r is solved as follows:

>> syms x r; solve(p * cos(x) - r, x)

ans =

acos ((8192*r)/1433639)

-acos ((8192*r)/1433639)

solve('eq1,eq2,…,eqn',
'x1, x2,…,xn')

Solves the n simultaneous equations eq1,…, eqn (the solutions are assigned to the
variables x1,…, xn)

>> [x, y] = solve('x^2 + x*y + y = 3','x^2-4*x + 3 = 0')

x =

1

3

y =

1

-3/2

syms x1 x2…xn;

solve(eq1,eq2,…,eqn,
x1, x2,…,xn)

Solves the n simultaneous equations eq1,…, eqn (the solutions are assigned to the
variables x1,…, xn)

>> syms x y; [x, y] = solve(x^2 + x*y + y-3, x^2-4*x + 3)

x =

1

3

y =

1

-3/2

(continued)

Chapter 9 ■ Algebraic Expressions, Polynomials, Equations and Systems. Tools for Optimization

233

X = linsolve (A, B) Solves the equation A * X = B where A,B and X are matrices.

We solve the system:

2x + y + z + t = 1

x + 2y + z + t = 2

x + y + z + 2t = 3

x + y + z + 2t = 4.

>> A = [2,1,1,1;1,2,1,1;1,1,2,1;1,1,1,2];B = [1,2,3,4]';

linsolve(A, B)

ans =

-1

0

1

2

x = lscov(A,B)

x = lscov(A,B,V)

Solves the equation A * x = B in the least squares sense, i.e., x is the n×1 vector that
minimizes the sum of squared errors (B - A*x)'*(B - A*x).

Solves A * x = B in the least squares sense with covariance matrix proportional to V,
i.e. x minimizes (B - A*x)'*inv(V)*(B - A*x).

>> A = [2,1,1,1;1,2,1,1;1,1,2,1;1,1,1,2];B = [1,2,3,4]';

lscov(A, B)

ans =

-1

0

1

2

X = A\B Solves the system A * X = B.

>> A = [2,1,1,1;1,2,1,1;1,1,2,1;1,1,1,2];B = [1,2,3,4]';

A\B

ans =

-1.0000

-0.0000

1.0000

2.0000

X = A/B Solves the system X * A = B.

(continued)

Chapter 9 ■ Algebraic Expressions, Polynomials, Equations and Systems. Tools for Optimization

234

roots (A) Returns the roots of the polynomial whose coefficients are given by the vector A
( from highest to lowest order).

As example we find the roots of the polynomial x4 + 2x3 + 3x + 4.

>> roots([1 2 3 4])

ans =

-1.6506

-0.1747 + 1.5469i

-0.1747 - 1.5469i

poly (V) Returns the coefficients of the polynomial whose roots are given by the vector V.

>> poly([1 2 3 4])

ans =

1 1 -10 -10 35 -50 24

x = fzero x0 (function) Returns a zero of the function near x0.

>> X = fzero('sin(x) - 1', pi/2)

X =

1.5708

[x, fval] = fzero x0 (fun) Also returns the objective value of the function at x.

>> [F x] = fzero('sin(x) - 1', pi/2)

X =

1.5708

f =

0

9.4.2 The Biconjugate Gradient Method
Below are the MATLAB commands that can be used to solve equations and systems of equations by the biconjugate
gradient method.

Chapter 9 ■ Algebraic Expressions, Polynomials, Equations and Systems. Tools for Optimization

235

x = bicg(A,b)

bicg(A,b,tol)

bicg(A,b,tol,maxit)

bicg(A,b,tol,maxit,M)

bicg(A,b,tol,maxit,M1,M2)

bicg(A,b,tol,maxit,M1,M2,x0)

[x,f] = bicg(A,b,…)

Tries to solve the system Ax = b by the method of biconjugate gradients.

>> A = [2 pi * pi 3 * pi - pi; 1 0 - 1 2; (1) (2) exp exp exp
exp (3) (4); i 2i 3i - i];

>> B = [1 2 3 4]';

>> bicg(A, B)

bicg stopped at iteration 4 without converging to the desired
tolerance 1e-006

because the maximum number of iterations was reached. The iterate
returned (number 0) has relative residual 1

ans =

0

0

0

0

Solves Ax = b by specifying tolerance.

Solves Ax = b by specifying the tolerance and the maximum number of iterations.
>> bicg(A,B, 1e-009,100)

ans =

1. 0e + 016 *

4.1449 0. 7033i

-7.1997 + 1. 2216i

3.2729 0. 5553i

-0.4360 + 0. 0740i

Solves the system inv(M) * A * x = inv (M) * b.

Solves the system inv(M) * A * x = inv (M) * b with M = M1 * M2.

Solves the system inv(M) * A * x = inv (M) * b with M = M1 * M2 and initial
value x0.

Tries to solve the system and also returns a convergence indicator
f (0 = convergence, 1 = no-convergence, 2 = ill-conditioned, 3 = stagnation and
4 = very extreme numbers).

>> [x, f] = bicg(A,B, 1e-009,100)

x =

1. 0e + 016 *

4.1449 0. 7033i

-7.1997 + 1. 2216i

3.2729 0. 5553i

-0.4360 + 0. 0740i

f =

3

(continued)

Chapter 9 ■ Algebraic Expressions, Polynomials, Equations and Systems. Tools for Optimization

236

x = bicgstab(A,b)

bicgstab(A,b,tol)

bicgstab(A,b,tol,maxit)

bicgstab(A,b,tol,maxit,M)

bicgstab(A,b,tol,maxit,M1,M2)

bicgstab(A,b,tol,maxit,M1,M2,x0)

[x,f] = bicgstab(A,b,…)

[x,f,relres] = bicgstab(A,b,…)

Tries to solve the system Ax = b by the method of stabilized biconjugate gradients.

>> bicgstab(A, B)

bicgstab stopped at iteration 4 without converging to the desired
tolerance 1e-006

because the maximum number of iterations was reached.

The iterate returned (number 4) has relative residual 0.88

ans =

1. 0e + 011 *

0.6696-0. 4857i

-1.1631 + 0. 8437i

0.5287 0. 3835i

-0.0704 + 0. 0511i

Solves Ax = b by specifying tolerance.

Solves Ax = b by specifying the tolerance and the maximum number of iterations.

>> bicg(A,B, 1e-009,100)

ans =

 1.0e + 016 *

 4.1449 0.7033i

-7.1997 + 1.2216i

 3.2729 0.5553i

-0.4360 + 0.0740i

Solves the system inv(M) * A * x = inv (M) * b.

Solves the system inv(M) * A * x = inv (M) * b with M = M1 * M2.

Solves the system inv(M) * A * x = inv (M) * b with M = M1 * M2 and initial
value x0.

Tries to solve the system and returns a convergence indicator
f (0 = convergence, 1 = no-convergence, 2 = ill-conditioned, 3 = stagnation and
4 = very extreme numbers).

Also returns the relative residual norm(b-A*x) /norm (b)

(continued)

Chapter 9 ■ Algebraic Expressions, Polynomials, Equations and Systems. Tools for Optimization

237

[x,f,relres,iter] = bicgstab(A,b,…) Also returns the number of iterations

>> [x, f, r, i] = bicg(A,B, 1e-006,100)

x =

1. 0e + 016 *

4.1449 0. 7033i

-7.1997 + 1. 2216i

3.2729 0. 5553i

-0.4360 + 0. 0740i

f =

3

r =

26.0415

i =

18

9.4.3 The Conjugate Gradients Method
Below are the MATLAB commands that are used to solve equations and systems of equations by the method of
conjugate gradients.

x = pcg(A,b)

pcg(A,b,tol)

pcg(A,b,tol,maxit)

pcg(A,b,tol,maxit,M)

pcg(A,b,tol,maxit,M1,M2)

pcg(A,b,tol,maxit,M1,M2,x0)

[x,f] = pcg(A,b,…)

[x,f,relres] = pcg(A,b,…)

Tries to solve the system Ax = b by the pre-conditioned conjugate gradients method.

Solves Ax = b by specifying tolerance.

Solves Ax = b by specifying the tolerance and the maximum number of iterations.

Solves the system inv(M) * A * x = inv (M) * b.

Solves the system inv(M) * A * x = inv (M) * b with M = M1 * M2.

Solves the system inv(M) * A * x = inv (M) * b with M = M1 * M2 and initial value x0.

Tries to solve the system and returns a convergence indicator f (0 = convergence,
1 = no-convergence, 2 = ill-conditioned, 3 = stagnation and 4 = very extreme
numbers).

Also returns the relative residual norm (b-A*x) /norm (b).

(continued)

Chapter 9 ■ Algebraic Expressions, Polynomials, Equations and Systems. Tools for Optimization

238

[x,f,relres,iter] = pcg(A,b,…) Also returns the number of iterations.

>> A = [pi 2*pi 3*pi -pi; 1 0 -1 2; exp(1) exp(2) exp(3) exp(4);
i 2i 3i -i];

>> B = [1 2 3 4]';

>> [x,f,r,i]=pcg(A,B, 1e-006,1000)

x =

0

0

0

0

f =

4

r =

1

i =

0

x = lsqr(A,b)

lsqr(A,b,tol)

lsqr(A,b,tol,maxit)

lsqr(A,b,tol,maxit,M)

lsqr(A,b,tol,maxit,M1,M2)

lsqr(A,b,tol,maxit,M1,M2,x0)

[x,f] = lsqr(A,b,…)

[x,f,relres] = lsqr(A,b,…)

Tries to solve the system Ax = b by the LSQR method.

Solves Ax = b by specifying tolerance.

Solves Ax = b by specifying the tolerance and the maximum number of iterations.

Solves the system inv(M) * A * x = inv (M) * b.

Solves the system inv(M) * A * x = inv (M) * b with M = M1 * M2.

Solves the system inv(M) * A * x = inv (M) * b with M = M1 * M2 and initial value x0.

Tries to solve the system and returns a convergence indicator f (0 = convergence,
1 = no-convergence, 2 = ill-conditioned, 3 = stagnation
and 4 = very extreme numbers).

Also returns the relative residual norm (b-A*x) /norm (b).

(continued)

Chapter 9 ■ Algebraic Expressions, Polynomials, Equations and Systems. Tools for Optimization

239

[x,f,relres,iter] = lsqr(A,b,…) Also returns the number of iterations.

>> A = [pi 2*pi 3*pi -pi; 1 0 -1 2; exp(1) exp(2) exp(3) exp(4);
i 2i 3i -i];

>> B = [1 2 3 4]';

>> [x, f, r, i] = lsqr(A,B, 1e-006,1000)

x =

 1.1869 0.0910i

 0.4295 0.0705i

-0.5402 - 0.0362i

 0.1364 + 0.0274i

f =

0

r =

0.6981

i =

3

9.4.4 The Residual Method
Below are the MATLAB commands that are used to solve equations and systems of equations by the residual method.

x = qmr(A,b)

qmr(A,b,tol)

qmr(A,b,tol,maxit)

qmr(A,b,tol,maxit,M)

qmr(A,b,tol,maxit,M1,M2)

qmr(A,b,tol,maxit,M1,M2,x0)

[x,f] = qmr(A,b,…)

[x,f,relres] = qmr(A,b,…)

Tries to solve the system Ax = b by the quasi-minimal residual method.

Solves Ax = b by specifying tolerance.

Solves Ax = b by specifying the tolerance and the maximum number of
iterations.

Solves the system inv(M) * A * x = inv (M) * b.

Solves the system inv(M) * A * x = inv (M) * b with M = M1 * M2.

Solves the system inv(M) * A * x = inv (M) * b with M = M1 * M2
and initial value x0.

Tries to solve the system and returns a convergence indicator f (0 = convergence,
1 = no-convergence, 2 = ill-conditioned, 3 = stagnation and 4 = very extreme
numbers).

Also returns the residual waste norm (b-A*x) /norm (b).

(continued)

Chapter 9 ■ Algebraic Expressions, Polynomials, Equations and Systems. Tools for Optimization

240

[x,f,relres,iter] = qmr(A,b,…) Also returns the number of iterations.

>> A = [pi 2*pi 3*pi -pi; 1 0 -1 2; exp(1) exp(2) exp(3) exp(4);
i 2i 3i -i];

>> B = [1 2 3 4]';

>> [x,f,r,i] = qmr(A,B, 1e-006,1000)

x =

 1.0e+016 *

 0.4810 - 4.0071i

-0.8356 + 6.9603i

 0.3798 - 3.1640i

-0.0506 + 0.4215i

f =

3

r =

19.5999

i =

11

x = gmres(A,b)

gmres(A,b,tol)

gmres(A,b,tol,maxit)

gmres(A,b,tol,maxit,M)

gmres(A,b,tol,maxit,M1,M2)

gmres(A,b,tol,maxit,M1,M2,x0)

[x,f] = gmres(A,b,…)

[x,f,relres] = gmres(A,b,…)

Tries to solve the system Ax = b by the generalized minimum residual method.

Solves Ax = b by specifying tolerance.

Solves Ax = b by specifying the tolerance and the maximum number of iterations.

Solves the system inv(M) * A * x = inv (M) * b.

Solves the system inv(M) * A * x = inv (M) * b with M = M1 * M2.

Solves the system inv(M) * A * x = inv (M) * b with M = M1 * M2 and initial value x0.

Tries to solve the system and returns a convergence indicator f (0 = convergence,
1 = no-convergence, 2 = ill-convergence, 3 = stagnation and 4 = very extreme
numbers).

Also returns the relative residual norm(b-A*x) /norm (b).

(continued)

Chapter 9 ■ Algebraic Expressions, Polynomials, Equations and Systems. Tools for Optimization

241

[x,f,relres,iter] = gmres(A,b,…) Also returns the number of iterations.

>> A = [pi 2*pi 3*pi -pi; 1 0 -1 2; exp(1) exp(2) exp(3) exp(4);
i 2i 3i -i];

>> B = [1 2 3 4]';

>> [x,f,r,i] = gmres(A,B)

x =

 1.5504 + 0.0085i

-0.2019 - 0.2433i

-0.2532 + 0.0423i

 0.0982 + 0.0169i

f =

3

r =

0.6981

i =

1 4

x = minres(A,b)

minres(A,b,tol)

minres(A,b,tol,maxit)

minres(A,b,tol,maxit,M)

minres(A,b,tol,maxit,M1,M2)

minres(A,b,tol,maxit,M1,M2,x0)

[x,f] = minres(A,b,…)

[x,f,relres] = minres(A,b,…)

Tries to solve the system Ax = b by the minimum residual method.

Solves Ax = b by specifying tolerance.

Solves Ax = b by specifying the tolerance and the maximum number of iterations.

Solves the system inv(M) * A * x = inv (M) * b.

Solves the system inv(M) * A * x = inv (M) * b with M = M1 * M2.

Solves the system inv(M) * A * x = inv (M) * b with M = M1 * M2 and
initial value x0.

Tries to solve the system and returns a convergence indicator f (0 = convergence,
1 = no-convergence, 2 = ill-conditioned, 3 = stagnation and 4 = very extreme
numbers).

Also returns the relative residual norm (b-A*x) /norm (b).

(continued)

Chapter 9 ■ Algebraic Expressions, Polynomials, Equations and Systems. Tools for Optimization

242

[x,f,relres,iter] = minres(A,b,…) Also returns the number of iterations.

>> A = [pi 2*pi 3*pi -pi; 1 0 -1 2; exp(1) exp(2) exp(3) exp(4);
i 2i 3i -i];

>> B = [1 2 3 4]';

>> [x,f,r,i] = minres(A,B, 1e-006,1000)

x =

 0.0748 - 0.0070i

-0.0761 - 0.0001i

 0.5934 - 0.1085i

-0.1528 + 0.0380i

f =

1

r =

0.0592

i =

1000

9.4.5 The Symmetric and Non-Negative Least Squares Method
Below are the MATLAB commands that are used to solve equations and systems of equations by the symmetric and
non-negative least squares methods.

x = symmlq(A,b)

symmlq(A,b,tol)

symmlq(A,b,tol,maxit)

symmlq(A,b,tol,maxit,M)

symmlq(A,b,tol,maxit,M1,M2)

symmlq(A,b,tol,maxit,M1,M2,x0)

[x,flag] = symmlq(A,b,…)

[x,flag,relres] = symmlq(A,b,…)

Tries to solve the system Ax = b by the symmetric LQ method.

Solves Ax = b by specifying the tolerance.

Solves Ax = b by specifying the tolerance and the maximum
number of iterations.

Solves the system inv(M) * A * x = inv (M) * b.

Solves the system inv(M) * A * x = inv (M) * b with M = M1 * M2.

Solves the system inv(M) * A * x = inv (M) * b with M = M1 * M2
and initial value x0.

Tries to solve the system and returns a convergence indicator
(0 = convergence, 1 = no-convergence, 2 = ill-conditioned,
3 = stagnation and 4 = very extreme numbers).

Also returns the relative residual norm (b-A*x) /norm (b).

(continued)

Chapter 9 ■ Algebraic Expressions, Polynomials, Equations and Systems. Tools for Optimization

243

[x,flag,relres,iter] = symmlq(A,b,…) Also returns the number of iterations.

>> A = [pi 2*pi 3*pi -pi; 1 0 -1 2; exp(1) exp(2) exp(3)
exp(4); i 2i 3i -i];

>> B = [1 2 3 4]';

>> [x,f,r,i] = symmlq(A,B, 1e-006,1000)

x =

0.0121 - 0.0004i

0.0035 - 0.0001i

0.1467 - 0.0061i

0.0001 + 0.0039i

f =

1

r =

0.8325

i =

3

x = lsqnonneg(C,d)

x = lsqnonneg(C,d,x0)

x = lsqnonneg(C,d,x0,opt)

[x,resnorm] = lsqnonneg(…)

[x,resnorm,residual] = lsqnonneg(…)

[x,resnorm,residual,f]
= lsqnonneg(…)

[x,resnorm,residual,f,
out,lambda] = lsqnonneg(…)

Returns the vector x that minimizes norm (C*x-d) subject to x >=0. C and d
must be real.

Uses x0>=0 as the initial value and a possible option. The options are TolX
for termination tolerance on x and Display to show the output ('off' does
not display output, 'final' shows just the final output and 'notify' shows the
output only if there is no convergence).

Returns the value of the squared 2-norm of the residual: norm(C*x-d)^2.

In addition returns the residual C * x-d.

In addition gives a convergence indicator f (positive indicates convergence,
0 indicates non-convergence).

In addition to the above, returns output data describing the algorithm
used, iterations taken and exit message, and also the vector of Lagrange
multipliers lambda.

>> A = [1 2 3;5 7 1;2 3 6]; B=[1 3 5]'; lsqnonneg(A,B)

ans =

0.4857

0

0.5714

Chapter 9 ■ Algebraic Expressions, Polynomials, Equations and Systems. Tools for Optimization

244

9.5 Solving Linear Systems of Equations
In the previous sections we have studied equations and systems in general. We will now focus on linear systems of
equations. To solve such systems we could simply use the commands we have seen so far, however MATLAB has a
selection of special commands designed especially for linear systems. The following table lists these commands.

X = linsolve (A, B) Solves the linear system A * X = B.

We solve the system:

2x + y + z + t = 1

x + 2y + z + t = 2

x + y +2z + t = 3

x + y + z + 2t = 4.

>> A = [2,1,1,1;1,2,1,1;1,1,2,1;1,1,1,2];B = [1,2,3,4]';

linsolve(A, B)

ans =

-1

0

1

2

[X, R] = linsolve (A, B) Solves the linear system A * X = B and additionally returns the reciprocal of the
condition number of A if A is square, or the rank of A if A is not square.

>> A = [2,1,1,1;1,2,1,1;1,1,2,1;1,1,1,2];B = [1,2,3,4]';

[X, R] = linsolve(A, B)

X =

-1

0

1

2

R =

0.1429

X = linsolve (A, B, options) Solves the linear system A * X = B using various options for the matrix A (UT for
upper triangular, LT for lower triangular, SYM for symmetric real or complex
hermitian, RECT for general rectangular, POSDEF for positive definite, UHESS for
upper Hessenberg and TRANSA for conjugate transpose).

rank (A) Rank of the matrix A.

>> rank(A)

ans =

4

(continued)

Chapter 9 ■ Algebraic Expressions, Polynomials, Equations and Systems. Tools for Optimization

245

det (A) Determinant of the square matrix A.

>> det(A)

ans =

5

Z = null (A, 'r') Rational basis for the null space of A.

Systems of linear equations can be converted to array form and solved using calculations with matrices. A system
can be written in the form M. X = B, where X is the vector of variables, B the vector of independent terms and M the
matrix of coefficients of the system. If M is a square matrix and the determinant of the matrix M is non-null, M is
invertible, and the unique solution of the system can be written in the form: X = M-1B. In this case, the commands
solve, linsolve, lscov, bicg, pcg, lsqr, gmr, gmres, minres, symmlq or M\B, already described above, offer the solution.

If the determinant of M is zero, the system has infinitely many solutions, since there are rows or columns in
M that are linearly dependent. In this case, the number of redundant equations can be calculated to find out how
many variables are needed to describe the solutions. If the matrix M is rectangular (not square), the system may
be undetermined (the number of equations is less than the number of variables), overdetermined (the number of
equations is greater than the number of variables) or non-singular (the number of equations is equal to number of
variables and M has non-zero determinant). An indeterminate system can have infinitely many solutions, or none,
and likewise for an overdetermined system. If a system has no solution, it is called inconsistent (incompatible), and
if there is at least one solution, it is called consistent (compatible). The system M . X = B is called homogeneous when
the vector B is the null vector, i.e. the system is of the form M . X= 0. If the determinant of M is non-null, the unique
solution of the system is the null vector (obtained with the command linsolve). If the determinant of M is zero, the
system has infinitely many solutions. The solutions can be found using the commands solve, linsolve, lsqr or other
commands described above for general linear systems.

A fundamental tool in the analysis and solution of systems of equations is the Rouche-Frobenius theorem. This
theorem says that a system of m equations with n unknowns has a solution if, and only if, the rank of the matrix of
coefficients coincides with the rank of the array extended with the vector column of the system-independent terms.
If the two ranks are equal, and equal to the number of unknowns, the system has a unique solution. If the two ranks
are the same, but less that the number of unknowns, the system has infinitely many solutions. If they are different, the
system has no solution.

In summary: Let A be the matrix of coefficients of the system and B the matrix A augmented by the column vector
of independent terms.

If rank(A) ≠ rank(B), the system is incompatible (without solution).
If rank (A) = rank(B) < n, the system is indefinite (has infinitely many solutions).
If = rank(A) = rank(B) = n, the system has a unique solution.
This theorem allows us to analyze the solutions of a system of equations before solving it.
We have already encountered homogeneous systems. A system A. X = B is said homogeneous if the vector of

independent terms B is null, so every homogeneous system is of the form A. X = 0. In a homogeneous system, the rank
of the matrix of coefficients and the rank of the matrix augmented to include the column vector of independent terms
always coincide. If we apply the Rouche-Frobenius theorem, a homogeneous system will have a unique solution
when the determinant of the matrix A is non-zero. Since the null vector is always a solution of a homogeneous system,
this must be the unique solution. A homogeneous system will have infinitely many solutions when the determinant of
the matrix A is zero. In this case, the solutions are calculated as for general systems (using the command solve), or by
using the function null (A).

Chapter 9 ■ Algebraic Expressions, Polynomials, Equations and Systems. Tools for Optimization

246

As a first example we solve the system:

2x + y + z + t = 1
x + 2y + z + t = 1
x + y + 2z + t = 1
x + y + z + 2t = 1

We will find the rank of the matrix of the system and the rank of the augmented matrix obtained by extending the
matrix by the column vector of independent terms.
 
>> A = [2,1,1,1;1,2,1,1;1,1,2,1;1,1,1,2];
>> B = [2,1,1,1,1;1,2,1,1,1;1,1,2,1,1;1,1,1,2,1];
>> [rank(A), rank(B)]
 
ans =
 
4 4
 

We note that the ranks of the two matrices coincide with the number of unknowns. The Rouche-Frobenius theorem
then tells us that the system is compatible with a unique solution. We can calculate the solution in the following way:
 
>> B = [1 1 1 1]';
>> linsolve(A, B)
 
ans =
 
0.2000
0.2000
0.2000
0.2000
 

The solution could also have been found using the following commands:
 
>> lscov(A, B)
 
ans =
 
0.2000
0.2000
0.2000
0.2000
 
>> bicg(A, B)
bicg converged at iteration 1 to a solution with relative residual 0
 
ans =
 
0.2000
0.2000
0.2000
0.2000
 

Chapter 9 ■ Algebraic Expressions, Polynomials, Equations and Systems. Tools for Optimization

247

>> pcg(A, B)
PCG converged at iteration 1 to a solution with relative residual 0
 
ans =
 
0.2000
0.2000
0.2000
0.2000
 
>> lsqr(A, B)
 
lsqr converged at iteration 1 to a solution with relative residual 0
 
ans =
 
0.2000
0.2000
0.2000
0.2000
 
>> qmr(A, B)
QMR converged at iteration 1 to a solution with relative residual 0
 
ans =
 
0.2000
0.2000
0.2000
0.2000
 
>> gmres(A, B)
gmres converged at iteration 1 to a solution with relative residual 1.5e-016
 
ans =
 
0.2000
0.2000
0.2000
0.2000
 
>> symmlq(A, B)
symmlq converged at iteration 1 to a solution with relative residual 0
 
ans =
 
0.2000
0.2000
0.2000
0.2000
 

Chapter 9 ■ Algebraic Expressions, Polynomials, Equations and Systems. Tools for Optimization

248

As a second example, we solve the system:

x + 2y + 3z = 6
x + 3y + 8z = 19
2x + 3y + z = −1

5x + 6y + 4z = 5

We find the rank of the matrix of the system and the rank of the augmented matrix.
 
>> A = [1,2,3;1,3,8;2,3,1;5,6,4];
>> B = [1,2,3,6;1,3,8,19;2,3,1,-1;5,6,4,5];
>> [rank(A), rank(B)]
 
ans =
 
3 3
 

We note that the ranks of the two matrices coincide with the number of unknowns. The Rouche-Frobenius
theorem then tells us that the system is compatible with a unique solution. We can calculate the solution in the
following way:
 
>> A = [1,2,3;1,3,8;2,3,1;5,6,4];
>> B = [19-6 - 5-1]';
>> linsolve(A, B)
 
ans =
 
1.0000
-2.0000
3.0000
 

As a third example, we solve the system:

x + 2y - z = 0
2x - y + z = 0

3x + y = 0

As we have a homogeneous system, we will calculate the determinant of the matrix of coefficients of the system.
 
>> A = [1,2, - 1; 2, - 1, 1; 3,1,0];
>> det(A)
 
ans =
 
5. 5511e-016
 

Chapter 9 ■ Algebraic Expressions, Polynomials, Equations and Systems. Tools for Optimization

249

This answer is very close to zero, in fact the determinant is actually zero, thus the homogeneous system will have
infinitely many solutions, which are calculated with the command solve as shown below.
 
>> [x, y, z] = solve('x+2*y-z, 2*x-y+z, 3*x+y', 'x,y,z')
 
x =
 
-z1/5
 

y =
 
(3 * z1) / 5
 

z =
 
z1
 

Thus the infinite set of solutions depend on a parameter z1 and are described as {(-z1/5, 3z1/5, z1)}, z1 ∈ R.

EXERCISE 9-1

Expand the following algebraic expressions:

()(),x x
x

x
+ +

+
+ ¢

1 2
1

2

 

sin(), cos(), , ln
()

, ()().ln()x y x e
x

x
x y za b+

-
æ

è
ç

ö

ø
÷ + ++2

1
1

2

>> syms x y z b t
>> pretty(expand((x + 1) * (x+2)))
 
 2
x + 3 x + 2
 
>> pretty(expand((x + 1) / (x+2)))
 
 x 1
------ + -------
x + 2 x + 2
 
>> pretty(expand(sin(x + y)))
 
sin(x) cos(y) + cos(x) sin(y)
 

Chapter 9 ■ Algebraic Expressions, Polynomials, Equations and Systems. Tools for Optimization

250

>> pretty(expand(cos(2*x)))
 
 2
2 cos (x) - 1
 
>> pretty(expand(exp(a+log(b)))
 
exp (a) b
 
>> pretty(expand(log(x/(1-x)^ 2)))
 
log (x) - 2-log(1-x)
 
>> pretty(expand((x + 1) * (y+z))) 

x y + x z + y + z

EXERCISE 9-2

Factorize the following algebraic expressions:

6 18 242 4 4 3 3
3 3

4 4
x x x y x y

x y

x y
+ - - +

-
-

, , ,

>> syms x y
>> pretty(factor(6*x^2+18*x-24))
 
6 (x + 4) (x - 1)
 
>> pretty(factor(x^4-y^4))
 
 2 2
(x y) (x + y) (x + y)
 
>> pretty(factor(x^3+y^3))
 
 2 2
(x + y) (x - x y + y)
 
>> pretty(factor((x^3-y^3) /(x^4-y^4)))
 
2 2
x + x y + y

 2 2
(x + y) (x + y)

Chapter 9 ■ Algebraic Expressions, Polynomials, Equations and Systems. Tools for Optimization

251

EXERCISE 9-3

Simplify the following algebraic expressions:

sin () cos (), , cos(cos()),
()

.ln()2 2
2 2

3
3x x e a x

x y

x y
a bec

+
-
-

+

>> syms x y b c
>> simplify(sin(x) ^ 2 + cos(x) ^ 2)
 
ans =
 
1
 
>> pretty(simplify(exp (a+log(b * exp(c)))))
 
b exp(a + c)
 
>> pretty(sym(simple(cos(3 * acos(x)))))
 
 3
4 x - 3 x
 
>> pretty(simple((x^2-y^2) /(x-y) ^ 3))
 
x + y

 2
(x - y)

EXERCISE 9-4

Rewrite the following algebraic expressions in terms of powers of x:

f (x) = a3x - x + a3x + a, p(x)= y/x+2z/x+x1/3-y*x1/3, q(x)=(x+1)(x+2)

Rewrite the following expression in terms of powers of sin(x): y(sin(x) + 1) + sin(x)

Rewrite the following expression in terms of powers of ln(x): f = aln(x) - xln(x) - x

Rewrite the following expression in terms of powers of x and y: p = xy + zxy + yx2+ zyx2+ x+zx

>> syms x y z
>> pretty(collect(a^3*x-x+a^3+a, x))
 
 3 3
(a -1) x + a + a 

Chapter 9 ■ Algebraic Expressions, Polynomials, Equations and Systems. Tools for Optimization

252

>> pretty(collect(y / x+2 * z/x + x ^(1/3) - y * ^(1/3) x, x))
 
y + 2 z – x 4/3 y + x4/3

 x
 
>> pretty(collect((x+1) * (x+2)))
 
 2
x + 3 x + 2
 
>> p = x * y + z * x * y + y * x ^ 2-z * y * x ^ 2 + x + z * x;
>> pretty(collect(p, [x,y]))
 
 2
(1-z) x y + (z + 1) x y + (z + 1) x
 
>> f = a * log(x) - log(x) * x-x;
 
>> pretty(collect(f, log(x)))
 
(a - x) log (x) - x

EXERCISE 9-5

Combine the terms as much as possible in the following expression:

aln(x) + 3ln(x) - ln(1 - x) + ln(1 + x)/2

Simplify it assuming that a is real and x > 0.

>> pretty(sym(simple(a * log(x) + 3 * log(x) - log(1-x) + log(1+x)/2)))
 
log(x + 1)/2- log(1-x) + 3 log (x) + log(x)
 
>> x = sym('x', 'positive')
 
x =
 
x
 
>> a = sym('a', 'real')
 
a =
 
a
  

Chapter 9 ■ Algebraic Expressions, Polynomials, Equations and Systems. Tools for Optimization

253

>> pretty(sym(simple(a * log(x) + 3 * log(x) - log(1-x) + log(1+x)/2)))
 
 / x - 1 \
-log| - ---------------- |
 | 3 a 1/2 |
 \ x x (x + 1) /

EXERCISE 9-6

Expand and simplify the following trigonometric expressions:

(a) sin[3x] cos[5x]

(b) [(cot[a])2 + (sec[a])2 - (csc[a])2

(c) sin[a] / (1+cot[a]2) - sin[a]3

>> pretty(simple(expand(sym(sin(3*x) * cos(5*x)))))
 
sin(8 x) sin(2 x)
-------- - --------
 2 2
 
>> pretty(simple(expand(((cot(a)) ^ 2 + (sec(a)) ^ 2-(csc(a)) ^ 2))))
 
 1
------- - 1
 2
cos(a)
 
>> pretty(simple(expand(sin(a) / (1 + cot(a) ^ 2)- sin(a) ^ 3)))
 
0

Chapter 9 ■ Algebraic Expressions, Polynomials, Equations and Systems. Tools for Optimization

254

EXERCISE 9-7

Simplify the following algebraic expressions as much as possible:
 2 2 3 3
 x y 2 x y   1 + a 1 - b a - b
—————— - —————— + ——————— , —————— + —————— - ——————
  x + y x - y 2 2 b a a b
 x - y
 
>> pretty(simple(expand(x / (x + y) - y /(x-y) + 2 * x * y /(x^2-y^2))))
 
1
 
>> pretty(simple(expand((1+a^2)/b + (1-b ^ 2) /a - (a ^ 3-b ^ 3) /(a*b))))
 
1 1
- + -
a b

EXERCISE 9-8

Simplify the following algebraic fractions as much as possible:

 3 2 2 2 2 2
 a - a b + ac - bc (x - 9) (x - 2 x + 1) (x - 3)
———————————————————— , —————————————————————————————
 3 2 2 2 2 2
 a + ac + a b + b c (x - 6 x + 9) (x - 1) (x - 1)
 
>> pretty(simple(factor(a^3-a^2*b+a*c^2-b*c^2)/(a^3+a*c^2+a^2*b+b*c^2)))
 
a - b

a + b
 
>> pretty(simple(factor((x^2-9)*(x^2-2*x+1)*(x-3))/((x^2-6*x+9)*(x^2-1) *(x-1))))
 
 2
----- + 1
x + 1 

Chapter 9 ■ Algebraic Expressions, Polynomials, Equations and Systems. Tools for Optimization

255

EXERCISE 9-9

Calculate the roots of the following polynomials:

x x x x x x x x3 2 4 3 2 116 72 27 2 3 4 5 11 1- - - - + - + -,

Evaluate the first polynomial at the identity matrix of order 3, the second at the unit matrix of order 3 and the third
at a uniformly random matrix of order 3.

Find the coefficients of the derivatives of the given polynomials and display the results in polynomial form.
 
>> p1 = [1 – 6 -72 - 27]; r = roots(p)
 
r =
 
12.1229
-5.7345
-0.3884
 
>> p2 = [2 -3 4 -5 11]; r = roots(p)
 
r =
 
1.2817 + 1.0040i
1.2817 - 1.0040i
-0.5317 + 1.3387i
-0.5317 - 1.3387i
 
>> p3 = [1 0 0 0 0 0 0 0 0 0 0 1]; r = roots(p)
 
r =
 
-1.0000
-0.8413 + 0.5406i
-0.8413 - 0.5406i
-0.4154 + 0.9096i
-0.4154 - 0.9096i
 0.1423 + 0.9898i
 0.1423 0.9898i
 0.6549 + 0.7557i
 0.6549 - 0.7557i
 0.9595 + 0.2817i
 0.9595 0.2817i
 
>> Y1 = polyval(p1, eye(3))
 
Y1 =
 
-104 - 27 - 27
-27 -104 - 27
-27 – 27 -104
 

Chapter 9 ■ Algebraic Expressions, Polynomials, Equations and Systems. Tools for Optimization

256

>> Y2 = polyval(p2, ones(3))
 
Y2 =
 
9 -9 -9
9 -9 -9
9 -9 -9
 
>> Y3 = polyval(p3, rand(3))
 
Y3 =
 
1.1050 1.3691 1.0000
1.3368 1.0065 1.0013
1.0000 1.0000 1.6202
 
>> d1 = polyder(p1)
 
D1 =
 
3 -12 -72
 
>> pretty(poly2sym(d1,'x'))
 
 2
3 x - 12 x - 72
 
>> d2 = polyder(p2)
 
D2 =
 
8 -9 8 - 5
 
>> pretty(poly2sym(d2,'x'))
 
 3 2
8 x - 9 x + 8 x - 5
 
>> d3 = polyder(p3)
 
D3 =
 
11 0 0 0 0 0 0 0 0 0 0
 
>> pretty(poly2sym(d3,'x'))
 
 10
11 x

Chapter 9 ■ Algebraic Expressions, Polynomials, Equations and Systems. Tools for Optimization

257

  EXERCISE 9-10

Consider the equally spaced set of points in the interval [0,5] separated by one tenth. Interpolate the error
function at these points and adjust a polynomial of degree 6 thereto. Represent the original data and the
interpolated curve on the same graph.
 
>> x = (0: 0.1: 5)';
y = erf (x);
f = polyval(p,x);
>> p = polyfit(x,y,6)
 
p =
 
0.0012 - 0.0173 0.0812 - 0.0791 - 0.4495 1.3107 - 0.0128
 
>> f = polyval(p,x);
plot(x,y,'o',x,f,'-')
axis([0 5 0 2])
 

Chapter 9 ■ Algebraic Expressions, Polynomials, Equations and Systems. Tools for Optimization

258

EXERCISE 9-11

Calculate the second degree interpolating polynomial passing through the points (- 1,4), (0,2), and (1,6) in the
least squares sense.
 
>> x = [- 1, 0, 1]; y = [4,2,6]; p = poly2sym(polyfit(x,y,2))
 
p =
 
3 * x ^ 2 + x + 2 

EXERCISE 9-12

Represent 200 points of cubic interpolation between the points (x, y) given by y= ex for x values in 20 equally
spaced intervals between 0 and 2.

First, we define the 20 points (x, y), for x equally spaced between 0 and 2:
 
>> x = 0:0.1:2;
>> y = exp(x);
 
Now we find cubic interpolation points (xi, yi), for x values in 200 equally spaced between 0 and 2, and represent
them on a graph together with the initial points (x, y) (indicated by asterisks).
 
>> xi = 0:0. 01:2;
>> yi = interp1(x,y,xi,'cubic');
>> plot(x,y,'*',xi,yi)

 

Chapter 9 ■ Algebraic Expressions, Polynomials, Equations and Systems. Tools for Optimization

259

EXERCISE 9-13

Find interpolation points of the parametric function X = cosh (t), Y = sinh (t), Z = tanh (t) for values of t
between 0 and p /6 in 25 equally spaced intervals.

First, we define the given points (x, y, z), for equally spaced values of t between 0 and p/ 6.
 
>> t = 0: pi/150: pi/6;
>> x = cosh(t); y = sinh(t); z = tanh(t);
 
Now we find the 26 points of interpolation (xi, yi, zi ), for values of the parameter t equally spaced between
0 and p / 6.
 
>> xi = cosh(t); yi = sinh(t);
>> zi = griddata(x,y,z,xi,yi);
>> points = [xi, yi, zi]
 
points =
 
1.0000 0 0
1.0002 0.0209 0.0209
1.0009 0.0419 0.0419
1.0020 0.0629 0.0627
1.0035 0.0839 0.0836
1.0055 0.1049 0.1043
1.0079 0.1260 0.1250
1.0108 0.1471 0.1456
1.0141 0.1683 0.1660
1.0178 0.1896 0.1863
1.0220 0.2110 0.2064
1.0267 0.2324 0.2264
1.0317 0.2540 0.2462
1.0373 0.2756 0.2657
1.0433 0.2974 0.2851
1.0498 0.3194 0.3042
1.0567 0.3414 0.3231
1.0641 0.3636 0.3417
1.0719 0.3860 0.3601
1.0802 0.4085 0.3782
1.0890 0.4312 0.3960
1.0983 0.4541 0.4135
1.1080 0.4772 0.4307
1.1183 0.5006 0.4476
1.1290 0.5241 0.4642
1.1402 0.5479 0.4805 

Chapter 9 ■ Algebraic Expressions, Polynomials, Equations and Systems. Tools for Optimization

260

EXERCISE 9-14

Using fast Fourier transform (FFT) interpolation, find the 30 points (xi, yi) approximating the function y = sinh (x)
for values of x that are in equally spaced intervals between 0 and 2p, interpolating them between values of (x, y)
given by y = sinh (x) for x values in 20 evenly spaced intervals in (0,2p). Graph the points.

First, we define the x values equally spaced in 20 intervals between 0 and 2p.
 
>> x = (0:pi/10:2*pi);
 
Now we find the interpolation points (x, y).
 
>> y = interpft(sinh(x), 30);
>> points = [y ', (asinh(y))']
 
points =
 
 -0.0000 - 0.0000
-28.2506 - 4.0346
 23.3719 3.8451
 -4.9711 - 2.3067
 -7.7918 - 2.7503
 14.0406 3.3364
 -4.8129 - 2.2751
 -0.8717 - 0.7877
 11.5537 3.1420
 -3.3804 - 1.9323
 4.4531 2.1991
 11.8616 3.1682
 -0.2121 - 0.2105
 10.9811 3.0914
 15.1648 3.4132
 6.1408 2.5147
 21.2540 3.7502
 23.3792 3.8455
 18.5918 3.6166
 39.4061 4.3672
 40.6473 4.3982
 42.8049 4.4499
 73.2876 4.9876
 74.8962 5.0093
 89.7159 5.1898
139.0371 5.6279
139.3869 5.6304
180.2289 5.8874
282.4798 6.3368
201.7871 6.0004
 
>> plot(points)

Chapter 9 ■ Algebraic Expressions, Polynomials, Equations and Systems. Tools for Optimization

261

 

EXERCISE 9-15

Find the polynomial of degree 3 which is the best fit through the points (i,i2) 1£ i £ 7, in the least squares sense.
Evaluate this polynomial at x = 10 and graphically represent the best fit curve.
 
>> x = (1:7); y = [1,4,9,16,25,36,49]; p = vpa(poly2sym(polyfit(x,y,2))))
 
p =
 
x ^ 2 - 0.000000000000009169181662272871686413366801652 * x +
0.000000000000020761891472015924526365781895317
 
Now we calculate the numerical value of the polynomial p at x = 10.
 
>> subs(p,10)
 
ans =
 
100.0000
 
Next we graph the polynomial:
 
>> ezplot(p,[-5,5])

Chapter 9 ■ Algebraic Expressions, Polynomials, Equations and Systems. Tools for Optimization

262

 

EXERCISE 9-16

Find the solutions to the following equations:

sin(x) cos(x) = 0, sin(x) = a cos(x), ax2 + bx + c = 0 and sin(x) + cos(x) = sqrt(3) / 2
 
>> solve('sin(x) * cos(x) = 0')
 
ans =
 
[0]
[1/2 * pi]
[-1/2 * pi]
 
>> solve('sin(x) = a * cos(x) ',' x')
 
ans =
 
atan(a)
 

Chapter 9 ■ Algebraic Expressions, Polynomials, Equations and Systems. Tools for Optimization

263

>> solve('a*x^2+b*x+c=0','x')
 
ans =
 
[1/2/a * (-b + (b ^ 2-4 * a * c) ^(1/2))]
[1/2/a * (-b-(b^2-4*a*c) ^(1/2))]
 
>> solve(' sin(x) + cos(x) = sqrt(3) / 2')
 
ans =
 
[1/2 * 3 ^(1/2)]
[1/2 * 3 ^(1/2)]

 

EXERCISE 9-17

Find at least two solutions for each of the following two trigonometric and exponential equations:

x x and xsin() / ().= =1 2 2 4 22 33

First, we use the command solve:
 
>> vpa(solve('x * sin(x) = 1/2 ', 'x'))
 
ans =
 
matrix([[-226.19688152398440474751335389781]])
 
>> vpa(solve('2 ^(x^3) = 4 * 2 ^(3*x)', 'x'))
 
ans =
 
2.0
-1.0
-1.0
 
For the first equation we get no solutions, but for the second we do. To better analyze the first equation, we
graphically represent the function to determine approximate intervals where the possible solutions can be found.
 
>> fplot('[x * sin(x) - 1/2.0]', [0, 4 * pi])

Chapter 9 ■ Algebraic Expressions, Polynomials, Equations and Systems. Tools for Optimization

264

 

We observe that there is a solution between 0 and 2, another between 2 and 4, another between 4 and 8, and so
on. We can calculate three of them with the command fzero.
 
>> s1 = fzero('x * sin(x) - 1/2 ', 2)
 
s1 =
 
0.7408
 
>> s2 = fzero('x * sin(x) - 1/2 ', 4)
 
s2 =
 
2.9726
 
>> s3 = fzero('x * sin(x) - 1/2 ', 6)
 
S3 =
 
6.3619 

Chapter 9 ■ Algebraic Expressions, Polynomials, Equations and Systems. Tools for Optimization

265

EXERCISE 9-18

Solve each of the following two logarithmic and surd equations:

x3/2 log(x) = x log(x3/2), sqrt[1 - x] + sqrt[1 + x] = a.
 
>> vpa(solve('^(3/2) x * log(x) = x * log(x) ^(3/2)'))
 
ans =
1.0
0.31813150520476413531265425158766 1.3372357014306894089011621431937 * i
 
We graph the function to determine the intervals in which a solution can be found. The plot indicates that x=1 is
the only real solution.
 
>> fplot('[^(3/2) x * log(x), x * log(x) ^(3/2)]', [0.3, - 1, 6])

 

Chapter 9 ■ Algebraic Expressions, Polynomials, Equations and Systems. Tools for Optimization

266

Now, we solve the surd equation:
 
>> pretty(sym(solve('sqrt(1-x) + sqrt(1 + x) = a ', 'x')))
 
 
+- -+
| 2 1/2 |
| a (4 - a) |
| ------------- |
| 2 |
| |
| 2 1/2 |
| a (4 - a) |
| - ------------- |
| 2 |
+- -+ 

EXERCISE 9-19

Solve the following system of two equations:

cos(x/12) /exp(x2/16) = y
-5/4 + y = sin(x3/2)

 
>> [x, y] = solve('cos(x/12) /exp(x^2/16) = y ',' - 5/4 + y = sin(x ^(3/2))')
 
x =
 
0.34569744170126319331033283636228 * i - 0.18864189802267887925036526820236
 
y =
 
0.0086520715192230549621145978569268 * i + 1.0055146234480859930589058368368

EXERCISE 9-20

Find the intersection of the hyperbolas with equations x2- y2= r2 and a2x2- b2y2= a2b2 with the parabola z2 = 2px.
 
>> [x, y, z] = solve('a^2*x^2-b^2*y^2=a^2*b^2','x^2-y^2=r^2','z^2=2*p*x','x,y,z')
 
x =
 
((4*a^2*b^2*p^2-4*b^2*p^2*r^2) /(a^2-b^2)) ^(1/2) /(2*p)
((4*a^2*b^2*p^2-4*b^2*p^2*r^2) /(a^2-b^2)) ^(1/2) /(2*p)
((4*a^2*b^2*p^2-4*b^2*p^2*r^2) /(a^2-b^2)) ^(1/2) /(2*p)

Chapter 9 ■ Algebraic Expressions, Polynomials, Equations and Systems. Tools for Optimization

267

-((4*a^2*b^2*p^2-4*b^2*p^2*r^2) /(a^2-b^2)) ^(1/2) /(2*p)
 ((4*a^2*b^2*p^2-4*b^2*p^2*r^2) /(a^2-b^2)) ^(1/2) /(2*p)
-((4*a^2*b^2*p^2-4*b^2*p^2*r^2) /(a^2-b^2)) ^(1/2) /(2*p)
-((4*a^2*b^2*p^2-4*b^2*p^2*r^2) /(a^2-b^2)) ^(1/2) /(2*p)
-((4*a^2*b^2*p^2-4*b^2*p^2*r^2) /(a^2-b^2)) ^(1/2) /(2*p)
 
y =
 
 a * ((b^2-r^2) /(a^2-b^2)) ^(1/2)
-a * ((b^2-r^2) /(a^2-b^2)) ^(1/2)
 a * ((b^2-r^2) /(a^2-b^2)) ^(1/2)
 a * ((b^2-r^2) /(a^2-b^2)) ^(1/2)
-a * ((b^2-r^2) /(a^2-b^2)) ^(1/2)
 a * ((b^2-r^2) /(a^2-b^2)) ^(1/2)
-a * ((b^2-r^2) /(a^2-b^2)) ^(1/2)
-a * ((b^2-r^2) /(a^2-b^2)) ^(1/2)
 
z =
 
 ((4*a^2*b^2*p^2-4*b^2*p^2*r^2) /(a^2-b^2)) ^(1/4)
 ((4*a^2*b^2*p^2-4*b^2*p^2*r^2) /(a^2-b^2)) ^(1/4)
-((4*a^2*b^2*p^2-4*b^2*p^2*r^2) /(a^2-b^2)) ^(1/4)
 ((4*a^2*b^2*p^2-4*b^2*p^2*r^2) /(a^2-b^2)) ^(1/4) * i
-((4*a^2*b^2*p^2-4*b^2*p^2*r^2) /(a^2-b^2)) ^(1/4)
-((4*a^2*b^2*p^2-4*b^2*p^2*r^2) /(a^2-b^2)) ^(1/4) * i
 ((4*a^2*b^2*p^2-4*b^2*p^2*r^2) /(a^2-b^2)) ^(1/4) * i
-((4*a^2*b^2*p^2-4*b^2*p^2*r^2) /(a^2-b^2)) ^(1/4) * i 

EXERCISE 9-21

Study and solve the system:

 x x x1 2 3 1- + =

4 5 5 41 2 3x x x+ - =

 2 21 2 3x x x+ - =

 x x x1 2 32 2 1+ - =
 
>> A = [1, - 1, 1; 4, 5, - 5; 2, 1, - 1; 1, 2, - 2]
 
A =
 
1 –1 -1
5 -4 -5
2 -1 -1
2 -1 -2
 

Chapter 9 ■ Algebraic Expressions, Polynomials, Equations and Systems. Tools for Optimization

268

>> B = [1, - 1, 1, 1; 4, 5, - 5, 4; 2, 1, - 1, 2; 1, 2, - 2, 1]
 
B =
 
1 –1 -1 -1
5 4 -5 4
1 2 -1 2
2 1 -2 1
 
>> [rank(A), rank(B)]
 
ans =
 
2 2
 
We see that the ranks of A and B coincide and its value is 2, which is less than the number of unknowns in the
system (3). Therefore, the system will have infinitely many solutions. We try to solve it with the command solve:
 
>> [x 1, x 2, x 3] = solve('x1-x2+x3=1','4*x1+5*x2-5*x3=4','2*x1+x2-x3=2',
'x1+2*x2-2*x3=1','x1','x2','x3')
Warning: 4 equations in three variables.
 
x 1 =
 
1
 
x 2 =
 
z
 
x 3 =
 
z
 
Infinitely many solutions are obtained in terms of the parameter z, namely {1,z, z }, zeR. Note that the trivial
solution {1,0,0} is obtained by setting the parameter equal to zero.

Chapter 9 ■ Algebraic Expressions, Polynomials, Equations and Systems. Tools for Optimization

269

EXERCISE 9-22

Study and solve the system:

x + 2y + 3z + t = 6

x + 3y + 8z + t =19
 
>> A = [1,2,3,1;1,3,8,1]
 
A =
 
1 2 3 1
1 3 8 1
 
>> B = [1,2,3,1,6;1,3,8,1,19]
 
B =
 
1 2 3 1 6
1 3 8 1 19
 
>> [rank(A), rank(B)]
 
ans =
 
2 2
 
We see that the ranks of A and B coincide, and their common value is 2, which is less than the number of
unknowns for the system (4). Therefore, the system has infinitely many solutions. We try to solve it:
 
>> [x, y, z, t] = solve('x+2*y+3*z+t=6','x+3*y+8*z+t=19','x','y','z','t')
Warning: 2 equations in 4 variables. New variables might be introduced.
 
x =
 
7 * z1 - z2 - 20
 
y =
 
z2
 
z =
 
13 - 5 * z1
 
t =
 
z1
 

Chapter 9 ■ Algebraic Expressions, Polynomials, Equations and Systems. Tools for Optimization

270

This time the solution depends on two parameters z1 and z2. As these parameters vary over the real numbers
(x,y,z,t) varies over all solutions of the system. These solutions form a two-dimensional subspace of the four
dimensional real vector space which can be expressed as follows: 
{7z1-z2-20, z2, 13-5z1, z1}, z1, z2∈R 

EXERCISE 9-23

Study and solve the system:

3 01 2 3 4x x x x+ + - =

2 01 2 3 4x x x x+ - + =

x x x x1 2 3 42 4 2 0+ + + =

 
2 2 01 2 3 4x x x x+ - - =

>> det([3,1,1,-1;2,1,-1,1;1,2,4,2;2,1,-2,-1])
 
ans =
 
-30
 
As the determinant of the coefficient matrix is non-zero, the system has only the trivial solution:
 
>> [(x1,x2,x3,x4]=solve('3*x1+x2+x3-x4=0','2*x1+x2-x3+x4=0','x1+2*x2-4*x3-2*x4=0',
'x1-x2-3*x3-5*x4=0','x1','x2','x3','x4')]
 
x 1 =
 
0
 
x 2 =
 
0
 
x 3 =
 
0
 
x 4 =
 
0
 

Chapter 9 ■ Algebraic Expressions, Polynomials, Equations and Systems. Tools for Optimization

271

EXERCISE 9-24

Study and solve the following system, according to the values of m:

mx + y + z = 1

x + my + z = m

x + y + mz = m2

 
>> syms m
>> A = [m,1,1;1,m,1;1,1,m]
 
A =
 
[m, 1, 1]
[1, m, 1]
[1, 1, m]
 
>> det(A)
 
ans =
 
m^3 - 3*m + 2
 
>> solve('m^3 - 3*m + 2=0','m')
 
ans =
 
-2
1
1
 
The values of m which determine the rank of the matrix are - 2 and 1.

We now consider the augmented matrix extended to include a fourth column with values 1, m and m2:
 
>> B = [m,1,1,1;1,m,1,m;1,1,m,m^2]
 
B =
 
[m, 1, 1, 1]
[1, m, 1, m]
[1, 1, m, m^2]
 
We will study the case m =-2:
 
>> rank(subs(A,{m},{-2}))
 
ans =
 
2
 

Chapter 9 ■ Algebraic Expressions, Polynomials, Equations and Systems. Tools for Optimization

272

>> rank(subs(B,{m},{-2}))
 
ans =
 
3
 
We see that the ranks of the two arrays are different, hence the system is inconsistent (i.e. it has no solution)
if m =-2.

Now we study the case m = 1:
 
>> rank(subs(A,{m},{1}))
 
ans =
 
1
 
>> rank(subs(B,{m},{1}))
 
ans =
 
1
 
Now the rank of both matrices is 1, which is less than the number of unknowns. In this case, the system has
infinitely many solutions. We find them by substituting m = 1 into the initial system:
 
>> [x,y,z] = solve('x+y+z=1','x','y','z')
Warning: 1 equation in 3 variables. New variables might be introduced.
  
x =
 
1 - z2 - z1
 
y =
 
z2
 
z =
 
z1
 
Thus the solutions are given in terms of two parameters. The two-dimensional subspace of solutions is:
 
{1-z2-z1, z2, z1}, z1, z2∈R
 

Chapter 9 ■ Algebraic Expressions, Polynomials, Equations and Systems. Tools for Optimization

273

If we consider the case where m is neither - 2 nor 1, the system has a unique solution, which is given by the
command solve:
 
>> [x,y,z] = solve('m*x+y+z=1','x+m*y+z=m','x+y+m*z=m^2','x','y','z')
 
x =
 
-(m + 1)/(m + 2)
 
y =
 
1 /(m + 2)
 
z =
 
(m ^ 2 + 2 * m + 1) /(m + 2) 

EXERCISE 9-25

Study and solve the following system, according to the values of m:

my = m

(1 + m) x - z = m

y + z = m
 
>> syms m
>> A = [0, m, 0; m + 1, 0, - 1; 0,1,1]
   
A =
 
[0, m, 0]
[m + 1, 0, - 1]
[0, 1, 1]
 
>> det(A)
 
ans =
 
-m ^ 2 - m
 
>> solve('-m^2-m=0','m')
 
ans =
 
-1
0
 

Chapter 9 ■ Algebraic Expressions, Polynomials, Equations and Systems. Tools for Optimization

274

We see that the values of m which determine the rank of the matrix of coefficients of the system
are m = 1 and m = 0.

We now consider the augmented matrix:
 
>> B = [0, m, 0, m; m + 1, 0, - 1, m; 0,1,1,m]
 
B =
 
[0, m, 0, m]
[m + 1, 0, - 1, m]
[0, 1, 1, m]
 
>> rank(subs(A,{m},{-1}))
 
ans =
 
2
 
>> rank(subs(B,{m},{-1}))
 
ans =
 
3
 
If m =-1, we see that the system has no solution because the rank of the matrix of coefficients of the system is
2 and the rank of the augmented matrix is 3.

Now, we analyze the case m = 0:

When m is zero the system is homogeneous, since the independent terms are all null. We analyze the determinant
of the matrix of coefficients of the system.
 
>> det(subs(A,{m},{0}))
  
ans =
 
0
 
Since the determinant is zero, the system has infinitely many solutions:
 
>> [x, y, z] = solve('x-z=0','y+z=0','x','y','z')
Warning: 2 equations in three variables. New variables might be introduced.
 
x =
 
z1
 
y =
 
-z1
  

Chapter 9 ■ Algebraic Expressions, Polynomials, Equations and Systems. Tools for Optimization

275

z =
 
z1
 
Thus the solutions are given in terms of one parameter. The one-dimensional subspace of solutions is:
 
{z1,-z1, z1}, z1 ∈R
 
If m is neither 0 nor - 1, the system has a unique solution, since the ranks of the matrix of the system and of the
augmented matrix coincide. The solution, using the function solve, is calculated as follows.
 
>> [x, y, z] = solve('m * y = m', '(1+m) * x-z = m ',' y + z = m', 'x', 'y', 'z')
 
x =
 
(2 * m - 1) /(m + 1)
 
y =
 
1
 
z =
 
m – 1

 

EXERCISE 9-26

Study and solve the system:

2x + y + z + t = 1

x + 2y + z + t = 1

x + y +2z + t = 1

x + y + z + 2t = 1
 
>> A = [2,1,1,1;1,2,1,1;1,1,2,1;1,1,1,2];
>> B = [2,1,1,1,1;1,2,1,1,1;1,1,2,1,1;1,1,1,2,1];
>> [rank(A), rank(B)]
 
ans =
 
4 4
 
>> b = [1,1,1,1]';
 

Chapter 9 ■ Algebraic Expressions, Polynomials, Equations and Systems. Tools for Optimization

276

We see that the matrices A and B (the augmented matrix) both have rank 4, which also coincides with the number
of unknowns. Thus the system has a unique solution. To calculate the solution we can use any of the commands
shown below.
 
>> x = nnls(A,b)
 
x =
 
0.2000
0.2000
0.2000
0.2000
 
>> x = bicg(A,b)
bicg converged at iteration 1 to a solution with relative residual 0
 
x =
 
0.2000
0.2000
0.2000
0.2000
 
>> x = bicgstab(A,b)
bicgstab converged at iteration 0.5 to a solution with relative residual 0
 
x =
 
0.2000
0.2000
0.2000
0.2000
 
>> x = pcg(A,b)
pcg converged at iteration 1 to a solution with relative residual 0
 
x =
 
0.2000
0.2000
0.2000
0.2000
 

Chapter 9 ■ Algebraic Expressions, Polynomials, Equations and Systems. Tools for Optimization

277

>> gmres(A,b)
gmres converged at iteration 1 to a solution with relative residual 0
 
ans =
 
0.2000
0.2000
0.2000
0.2000
 
>> x = lsqr(A,b)
lsqr converged at iteration 2 to a solution with relative residual 0
 
x =
 
0.2000
0.2000
0.2000
0.2000
 
>> A\b'
 
ans =
 
0.2000
0.2000
0.2000
0.2000 

MATLAB Optimization
Techniques

César Pérez López

MATLAB Optimization Techniques

Copyright © 2014 by César Pérez López

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material
is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval,
electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.
Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material
supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the
purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the
Copyright Law of the Publisher’s location, in its current version, and permission for use must always be obtained from
Springer. Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations are
liable to prosecution under the respective Copyright Law.

ISBN-13 (pbk): 978-1-4842-0293-7

ISBN-13 (electronic): 978-1-4842-0292-0

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with every
occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an editorial fashion
and to the benefit of the trademark owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified
as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication, neither
the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may
be made. The publisher makes no warranty, express or implied, with respect to the material contained herein.

Managing Director: Welmoed Spahr
Lead Editor: Dominic Shakeshaft
Editorial Board: Steve Anglin, Mark Beckner, Ewan Buckingham, Gary Cornell, Louise Corrigan, Jim DeWolf,

Jonathan Gennick, Jonathan Hassell, Robert Hutchinson, Michelle Lowman, James Markham,
Matthew Moodie, Jeff Olson, Jeffrey Pepper, Douglas Pundick, Ben Renow-Clarke, Dominic Shakeshaft,
Gwenan Spearing, Matt Wade, Steve Weiss

Coordinating Editor: Melissa Maldonado
Copy Editor: Barnaby Sheppard
Compositor: SPi Global
Indexer: SPi Global
Artist: SPi Global
Cover Designer: Anna Ishchenko

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com, or visit
www.springeronline.com. Apress Media, LLC is a California LLC and the sole member (owner) is Springer Science +
Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Special Bulk Sales–eBook
Licensing web page at www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this text is available to readers at
www.apress.com. For detailed information about how to locate your book’s source code, go to
www.apress.com/source-code/.

http://orders-ny@springer-sbm.com
www.springeronline.com
http://rights@apress.com
www.apress.com
www.apress.com/bulk-sales
www.apress.com
www.apress.com/source-code/

v

Contents

About the Author�� ix

Chapter 1: Introducing MATLAB and the MATLAB Working Environment■■ ����������������������������1

1.1 Introduction��1

1.1.1 Developing Algorithms and Applications��� 2

1.1.2 Data Access and Analysis�� 5

1.1.3 Data Visualization�� 6

1.1.4 Numerical Calculation��� 9

1.1.5 Publication of Results and Distribution of Applications��� 10

1.2 The MATLAB Working Environment��11

1.3 Help in MATLAB��16

Chapter 2: MATLAB Programming■■ ��23

2.1 MATLAB Programming���23

2.1.1 The Text Editor��� 23

2.1.2 Scripts��� 26

2.1.3 Functions and M-files. Eval and Feval��� 29

2.1.4 Local and Global Variables��� 32

2.1.5 Data Types��� 34

2.1.6 Flow Control: FOR, WHILE and IF ELSEIF Loops��� 35

2.1.7 Subfunctions�� 43

2.1.8 Commands in M-files�� 44

2.1.9 Functions Relating to Arrays of Cells��� 45

2.1.10 Multidimensional Array Functions��� 48

■ Contents

vi

Chapter 3: Basic MATLAB Functions for Linear and Non-Linear Optimization■■ �����������������53

3.1 Solutions of Equations and Systems of Equations���53

3.2 Working with Polynomials��59

Chapter 4: Optimization by Numerical Methods: Solving Equations■■ ��������������������������������67

4.1 Non-Linear Equations���67

4.1.1 The Fixed Point Method for Solving x = g(x) ��� 67

4.1.2 Newton’s Method for Solving the Equation f(x) = 0��� 70

4.1.3 Schröder’s Method for Solving the Equation f(x) = 0��� 72

4.2 Systems of Non-Linear Equations��72

4.2.1 The Seidel Method��� 73

4.2.2 The Newton-Raphson Method��� 73

Chapter 5: Optimization Using Symbolic Computation■■ ���81

5.1 Symbolic Equations and Systems of Equations ��81

Chapter 6: Optimization Techniques Via The Optimization Toolbox■■ ����������������������������������85

6.1 The Optimization Toolbox���85

6.1.1 Standard Algorithms�� 85

6.1.2 Large Scale Algorithms�� 85

6.2 Minimization Algorithms���86

6.2.1 Multiobjective Problems ��� 86

6.2.2 Non-Linear Scalar Minimization With Boundary Conditions�� 89

6.2.3 Non-Linear Minimization with Restrictions��� 89

6.2.4 Minimax Optimization: fminimax and fminuc�� 91

6.2.5 Minimax Optimization�� 92

6.2.6 Minimum Optimization: fminsearch and fminuc�� 93

6.2.7 Semi-Infinitely Constrained Minimization�� 93

6.2.8 Linear Programming ��� 94

6.2.9 Quadratic programming �� 96

6.3 Equation Solving Algorithms��98

6.3.1 Solving Equations and Systems of Equations�� 98

■ Contents

vii

6.4 Fitting Curves by Least Squares���100

6.4.1 Conditional Least Squares Problems �� 100

6.4.2 Non- Linear Least Squares Problems ��� 100

6.4.3 Linear Non- Negative Least Squares Problems��� 101

�Chapter 7: Differentiation in one and Several Variables. ■■
Applications to Optimization��109

7.1 Derivatives��109

7.2 Par tial Derivatives ���111

7.3 Applications of Derivatives. Tangents, Asymptotes, Extreme Points and Turning Points������113

7.4 Differentiation of Functions of Several Variables ��117

7.5 Maxima and Minima of Functions of Several Variables��122

7.6 Conditional Minima and Maxima. The Method of “Lagrange Multipliers”����������������������������130

7.7 Vector Differential Calculus ���133

7.8 The Composite Function Theorem ���134

7.9 The Implicit Function Theorem ��135

7.10 The Inverse Function Theorem���136

7.11 The Change of Variables Theorem ���138

7.12 Series Expansions in Several Variables ���138

7.13 Vector Fields. Curl, Divergence and the Laplacian���139

7.14 Spherical, Cylindrical and Rectangular Coordinates ���141

Chapter 8: Optimization of Functions of Complex Variables■■ ��165

8.1 Complex Numbers��165

8.2 General Functions of a Complex Variable���166

8.2.1 Trigonometric Functions of a Complex Variable��� 166

8.2.2 Hyperbolic Functions of a Complex Variable��� 167

8.2.3 Exponential and Logarithmic Functions of a Complex Variable��� 168

8.3 Specific Functions of a Complex Variable��169

8.4 Basic Functions with Complex Vector Arguments��170

8.5 Basic Functions with Complex Matrix Arguments��175

■ Contents

viii

8.6 General Functions with Complex Matrix Arguments��181

8.6.1 Trigonometric Functions of a Complex Matrix Variable��� 181

8.6.2 Hyperbolic Functions of a Complex Matrix Variable�� 186

8.6.3 Exponential and Logarithmic Functions of a Complex Matrix Variable�� 190

8.6.4 Specific Functions of a Complex Matrix Variable�� 192

8.7 Matrix Operations with Real and Complex Variables��195

�Chapter 9: Algebraic Expressions, Polynomials, Equations and Systems. ■■
Tools for Optimization��217

9.1 Expanding, Simplifying and Factoring Algebraic Expressions��217

9.2 Polynomials��220

9.3 Polynomial Interpolation���224

9.4 Solving Equations and Systems of Equations��232

9.4.1 General Methods��� 232

9.4.2 The Biconjugate Gradient Method��� 234

9.4.3 The Conjugate Gradients Method�� 237

9.4.4 The Residual Method��� 239

9.4.5 The Symmetric and Non-Negative Least Squares Method�� 242

9.5 Solving Linear Systems of Equations���244

ix

About the Author

César Pérez López is a Professor at the Department of Statistics and Operations Research at the University of Madrid.
César is also a Mathematician and Economist at the National Statistics Institute (INE) in Madrid, a body which
belongs to the Superior Systems and Information Technology Department of the Spanish Government. César also
currently works at the Institute for Fiscal Studies in Madrid.

xi

Also Available

MATLAB Programming for Numerical Analysis, •	 978-1-4842-0296-8

MATLAB Control Systems Engineering, •	 978-1-4842-0290-6

MATLAB Differential Equations, •	 978-1-4842-0311-8

MATLAB Linear Algebra, •	 978-1-4842-0323-1

MATLAB Differential and Integral Calculus, •	 978-1-4842-0305-7

	Contents at a Glance
	Contents
	About the Author
	Chapter 1: Introducing MATLAB and the MATLAB Working Environment
	1.1 Introduction
	1.1.1 Developing Algorithms and Applications
	1.1.2 Data Access and Analysis
	1.1.3 Data Visualization
	1.1.4 Numerical Calculation
	1.1.5 Publication of Results and Distribution of Applications

	1.2 The MATLAB Working Environment
	1.3 Help in MATLAB

	Chapter 2: MATLAB Programming
	2.1 MATLAB Programming
	2.1.1 The Text Editor
	2.1.2 Scripts
	2.1.3 Functions and M-files. Eval and Feval
	2.1.4 Local and Global Variables
	2.1.5 Data Types
	2.1.6 Flow Control: FOR, WHILE and IF ELSEIF Loops
	FOR Loops
	WHILE Loops
	IF ELSEIF ELSE END Loops
	SWITCH and CASE
	CONTINUE
	BREAK
	TRY... CATCH
	RETURN

	2.1.7 Subfunctions
	2.1.8 Commands in M-files
	2.1.9 Functions Relating to Arrays of Cells
	2.1.10 Multidimensional Array Functions

	Chapter 3: Basic MATLAB Functions for Linear and Non-Linear Optimization
	3.1 Solutions of Equations and Systems of Equations
	3.2 Working with Polynomials

	Chapter 4: Optimization by Numerical Methods: Solving Equations
	4.1 Non-Linear Equations
	4.1.1 The Fixed Point Method for Solving x = g(x)
	4.1.2 Newton’s Method for Solving the Equation f(x) = 0
	4.1.3 Schröder’s Method for Solving the Equation f(x) = 0

	4.2 Systems of Non-Linear Equations
	4.2.1 The Seidel Method
	4.2.2 The Newton-Raphson Method

	Chapter 5: Optimization Using Symbolic Computation
	5.1 Symbolic Equations and Systems of Equations

	Chapter 6: Optimization Techniques Via The Optimization Toolbox
	6.1 The Optimization Toolbox
	6.1.1 Standard Algorithms
	6.1.2 Large Scale Algorithms

	6.2 Minimization Algorithms
	6.2.1 Multiobjective Problems
	6.2.2 Non-Linear Scalar Minimization With Boundary Conditions
	6.2.3 Non-Linear Minimization with Restrictions
	6.2.4 Minimax Optimization: fminimax and fminuc
	6.2.5 Minimax Optimization
	6.2.6 Minimum Optimization: fminsearch and fminuc
	6.2.7 Semi-Infinitely Constrained Minimization
	6.2.8 Linear Programming
	6.2.9 Quadratic programming

	6.3 Equation Solving Algorithms
	6.3.1 Solving Equations and Systems of Equations

	6.4 Fitting Curves by Least Squares
	6.4.1 Conditional Least Squares Problems
	6.4.2 Non- Linear Least Squares Problems
	6.4.3 Linear Non- Negative Least Squares Problems

	Chapter 7: Differentiation in one and Several Variables. Applications to Optimization
	7.1 Derivatives
	7.2 Par tial Derivatives
	7.3 Applications of Derivatives. Tangents, Asymptotes, Extreme Points and Turning Points
	7.4 Differentiation of Functions of Several Variables
	7.5 Maxima and Minima of Functions of Several Variables
	7.6 Conditional Minima and Maxima. The Method of “Lagrange Multipliers”
	7.7 Vector Differential Calculus
	7.8 The Composite Function Theorem
	7.9 The Implicit Function Theorem
	7.10 The Inverse Function Theorem
	7.11 The Change of Variables Theorem
	7.12 Series Expansions in Several Variables
	7.13 Vector Fields. Curl, Divergence and the Laplacian
	Spherical, Cylindrical and Rectangular Coordinates

	Chapter 8: Optimization of Functions of Complex Variables
	8.1 Complex Numbers
	8.2 General Functions of a Complex Variable
	8.2.1 Trigonometric Functions of a Complex Variable
	8.2.2 Hyperbolic Functions of a Complex Variable
	8.2.3 Exponential and Logarithmic Functions of a Complex Variable

	8.3 Specific Functions of a Complex Variable
	8.4 Basic Functions with Complex Vector Arguments
	8.5 Basic Functions with Complex Matrix Arguments
	8.6 General Functions with Complex Matrix Arguments
	8.6.1 Trigonometric Functions of a Complex Matrix Variable
	8.6.2 Hyperbolic Functions of a Complex Matrix Variable
	8.6.3 Exponential and Logarithmic Functions of a Complex Matrix Variable
	8.6.4 Specific Functions of a Complex Matrix Variable

	8.7 Matrix Operations with Real and Complex Variables

	Chapter 9: Algebraic Expressions, Polynomials, Equations and Systems. Tools for Optimization
	9.1 Expanding, Simplifying and Factoring Algebraic Expressions
	9.2 Polynomials
	9.3 Polynomial Interpolation
	9.4 Solving Equations and Systems of Equations
	9.4.1 General Methods
	9.4.2 The Biconjugate Gradient Method
	9.4.3 The Conjugate Gradients Method
	9.4.4 The Residual Method
	9.4.5 The Symmetric and Non-Negative Least Squares Method

	9.5 Solving Linear Systems of Equations

